Ele-prof.ru

Электро отопление
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Автоматические выключатели для переменного тока подключение

Автоматы постоянного тока

Вот ребята задали вопрос, как подключить правильно автомат оперативного тока GE, EP102UC. Погуглил, но нашёл только табличку с данными и внешний вид. Маркировка + и — нанесена только с одной стороны, на нижних клеммах автомата. Это сторона питания (к источнику) или к нагрузке? Надо знать точно, сами понимаете, иначе сгорит ведь автомат при КЗ. В наших традициях питание всегда подходит сверху. А как "у них"?

2 Ответ от grsl 2011-05-24 15:47:59

  • grsl
  • Администратор
  • Неактивен
  • Зарегистрирован: 2011-01-07
  • Сообщений: 6,122
  • Репутация : [ 0 | 0 ]
Re: Автоматы постоянного тока

Стандартно у других производителей + и — показывает подключение питания.
если сверху, то надо наискок от указателя снизу.
Дженералов не встречал таких автоматов, сейчас посмотрю.

3 Ответ от nkulesh 2011-05-24 16:25:36

  • nkulesh
  • пенсионер
  • Неактивен
  • Откуда: Зея
  • Зарегистрирован: 2011-01-12
  • Сообщений: 1,464
  • Репутация : [ 5 | 0 ]
Re: Автоматы постоянного тока

На картинке у однополюсного автомата "+" стоит только внизу, обозначен внизу. Значит, он гасит ток при протекании тока снизу-вверх? Ну, вроде бы обозначена должна быть полярность питания, нагрузка ведь или есть, или ещё нет, а питание уже должно быть подключено.

4 Ответ от grsl 2011-05-25 07:34:32

  • grsl
  • Администратор
  • Неактивен
  • Зарегистрирован: 2011-01-07
  • Сообщений: 6,122
  • Репутация : [ 0 | 0 ]
Re: Автоматы постоянного тока

Если автомат однополюсный то направление только одно и + показывает подключение питания, а не нагрузки.

В случае АВ двухполюсного, обычно рисуют на морде лица АВ и подключение "сверху" и "снизу", например АВ АББ S282UC
но +, — только указан снизу

По поводу снизу или сверху подключить питание, обычно отдаётся на откуп производителя шкафа или указывается в ТЗ.
Существуют некие правила, что в шкафу все АВ будут подключены или сверху или снизу, за исключением вводного автомата, всё зависит от расположения вводов, кабели подключены снизу или сверху. Как расположены шинки + и -, снизу или сверху

Дима скажет как в Германии, может есть какие другие требования

5 Ответ от grsl 2011-05-25 07:42:10

  • grsl
  • Администратор
  • Неактивен
  • Зарегистрирован: 2011-01-07
  • Сообщений: 6,122
  • Репутация : [ 0 | 0 ]
Re: Автоматы постоянного тока

На картинке видно что можно в АББ подключить питание + или к 2 или к 3 полюсу.
Думаю также и в Дженералах, надо менять полярность, чтобы дуга "выдувалась"

6 Ответ от nkulesh 2011-05-25 10:45:01

  • nkulesh
  • пенсионер
  • Неактивен
  • Откуда: Зея
  • Зарегистрирован: 2011-01-12
  • Сообщений: 1,464
  • Репутация : [ 5 | 0 ]
Re: Автоматы постоянного тока

Спасибо. Похожую картинку нашёл в описании АВ Schneider Electric. Там в тексте сказано о необходимость соблюдать полярность подключения питания. Т.е. обозначение относится именно к стороне питания. Этого достаточно, это однозначно определяет подключение нагрузки. Я так и ответил коллегам. Можно ещё опыт поставить, пожертвовав одним автоматом 🙂

7 Ответ от lik 2011-05-25 11:05:36

  • lik
  • собеседник
  • Неактивен
  • Откуда: Киев
  • Зарегистрирован: 2011-01-09
  • Сообщений: 2,446
  • Репутация : [ 0 | 0 ]
Re: Автоматы постоянного тока

Не факт, Николай, что этот опыт что-то покажет. Как мне рассказывали, несоблюдение полярности не всегда выводит автомат из строя, а только дуга не в ту сторону. И тут, видимо, должен быть большой ТКЗ, чтобы автомат сгорел.
Но это с чужих слов. Сам опыты не делал.

8 Ответ от nkulesh 2011-05-25 13:31:13

  • nkulesh
  • пенсионер
  • Неактивен
  • Откуда: Зея
  • Зарегистрирован: 2011-01-12
  • Сообщений: 1,464
  • Репутация : [ 5 | 0 ]
Re: Автоматы постоянного тока

Я видел 🙂 Автомат тихо щёлкает (расцепитель-то срабатывает), и спустя несколько секунд из него идёт дым . "Трупо" (как говорят Бандито и Гангстерито из "Капитана Врунгеля") Возможно, при небольшой кратности тока дуга всё-таки гаснет. Кстати, проверка от выпрямителя тоже ничего не даёт — напряжение пульсирует, если только схема не Ларионова, трёхфазная.
В описании на автомат C32H-DC Schneider Electric сказано: "Необходимо соблюдать поляpность подключения питания , как указано на аппаpате." Я подчеркнул слово "питания". Говорил сегодня со знакомыми наладчиками, они проверили их многие десятки, ребята обращают внимание на полярность, на направление тока КЗ. Приходится.

9 Ответ от misterX 2011-06-22 10:31:39

  • misterX
  • Пользователь
  • Неактивен
  • Зарегистрирован: 2011-01-11
  • Сообщений: 172
  • Репутация : [ 0 | 0 ]
Re: Автоматы постоянного тока

Ребят, есть доки на ABB S282 UC. Интересуют дополнительные элементы — дистанционные расцепители, контакты SD, OF. А так же их хараткеристики

10 Ответ от grsl 2011-06-22 11:27:16

  • grsl
  • Администратор
  • Неактивен
  • Зарегистрирован: 2011-01-07
  • Сообщений: 6,122
  • Репутация : [ 0 | 0 ]
Re: Автоматы постоянного тока

11 Ответ от evdbor 2011-06-22 11:30:02

  • evdbor
  • Модератор
  • Неактивен
  • Зарегистрирован: 2011-01-07
  • Сообщений: 1,756
  • Репутация : [ 0 | 0 ]
Re: Автоматы постоянного тока

Каталог на русском языке 2010 г.
Ч. 2. Модульные автоматические выключатели – 15,9 МБ
http://www05.abb.com/global/scot/scot20 … 0038-2.pdf
Ч. 4. Вспомогательные элементы и аксессуары – 8,1 МБ
http://www05.abb.com/global/scot/scot20 … 0038-4.pdf
Ч. 11. Подробные технические характеристики – 10,6 МБ
http://www05.abb.com/global/scot/scot20 … 038-11.pdf

12 Ответ от misterX 2011-06-23 08:44:44

  • misterX
  • Пользователь
  • Неактивен
  • Зарегистрирован: 2011-01-11
  • Сообщений: 172
  • Репутация : [ 0 | 0 ]
Re: Автоматы постоянного тока

Господа, вот как то так должен выглядеть автомат S282 UC в цепях АУВ с дистанционным отключением и сигнальными контактами (КЗ или перегрузка)?
http://rzia.ru/extensions/hcs_image_uploader/uploads/0/9500/9937/thumb/p162tggq4k5kbv4p1hv01kch11d11.jpghttp://rzia.ru/extensions/hcs_image_uploader/uploads/0/9500/9937/thumb/p162tggq4k5kbv4p1hv01kch11d11.jpg

13 Ответ от evdbor 2011-06-23 10:34:34

  • evdbor
  • Модератор
  • Неактивен
  • Зарегистрирован: 2011-01-07
  • Сообщений: 1,756
  • Репутация : [ 0 | 0 ]
Re: Автоматы постоянного тока

В схему ЦС, ИМХО, должен идти не сигнальный контакт аварийного отключения, а вспомогательный контакт сигнализирующий как отключение от КЗ и перегрузки, так и ошибочное или оперативное отключение.
Для АВ серии S280 это контакт S2-H11. Можно воспользоваться элементом S2-S/H содержащим как сигнальный так и вспомогательный контакт.

14 Ответ от grsl 2011-06-23 10:40:55

  • grsl
  • Администратор
  • Неактивен
  • Зарегистрирован: 2011-01-07
  • Сообщений: 6,122
  • Репутация : [ 0 | 0 ]
Re: Автоматы постоянного тока

S2-H11 самое удобное для использования

Читайте так же:
Диммер с выключателем shin dong

15 Ответ от misterX 2011-06-23 12:19:25

  • misterX
  • Пользователь
  • Неактивен
  • Зарегистрирован: 2011-01-11
  • Сообщений: 172
  • Репутация : [ 0 | 0 ]
Re: Автоматы постоянного тока

Господа, вопрос конечно касался правильности изображения.. — правильно ли показано!
По поводу что должно идти в ЦС — вопрос спорный:

у терминалов есть свой контакт — отказа терминала (по внутренней логике в который входит отключение питания =220В)

у ШРОТа (где собственно стоит этот автомат) есть общая лампа сигнализации неисправности. сухие контакты у всех автоматов объединяются в общую цепь, в которую включено пром реле (срабатывание которого приводит к замыканию его контактов и передачу информации о аварийном событии в АСУ ТП)

отключение автомата питания (не перегрузка и не КЗ) (а все равно есть резервные — отключенные) не должно приводить к передачи информации в АСУ ТП о неисправности цепей опер.тока . если вы имеете ввиду, что от каждого автомата питания защит, АУВ. должны идти сухие контакты в РАС или АСУ ТП — весьма жирненько. обычно один сухой в АСУТП об аварийном событии в ШРОТе — КЗ, перегрузка. — имхо так хочет заказчик

Стенд для прогрузки автоматов. Прогружаем автоматы. Часть 1 (из 4)

Как проверить срабатывание автоматического выключателя по заданной уставке? При помощи чего можно проверить характеристику срабатывания? В этой статье постараемся изложить принципы проверки автоматических выключателей, а так же рассмотрим устройства, с помощью которых можно данную проверку провести.

Для справки: автоматические выключатели (или автоматы) — это механические коммутационные аппараты, способные, во включённом положении, проводить токи при нормальном состоянии цепи, а также включать, проводить в течение времени заданного уставкой и автоматически отключать токи в указанном аномальном состоянии цепи, таких например, как токи короткого замыкания или токи перегрузки.

Время срабатывания при различных токах перегрузки или токах короткого замыкания, т.е. зависимость времени срабатвания (отключения) автоматического выключателя, называется характеристикой автомата (ещё её называют время-токовой характеристикой). Данную характеристику можно снять, имя подручные средства.

Стенд для проверки характеристик срабатывания автоматического выключателя конструктивно состоит из:

    1. Источника переменного тока.
    2. Контрольно-измерительной аппаратуры.
    3. Соединительных кабелей, колодок и пр.
    4. Столешницы из диэлектрических материалов или специально оборудованного рабочего места.
    5. Диэлектрического коврика для защиты оператора стенда.

    Такой стенд может стать неотъемлемой частью магазина электротехнических материалов, который будет служить для того, чтобы отбраковывать неисправные устройства ещё на стадии получения товара и избежать дальнейших проблем с покупателями.

    В данной статье рассмотрим возможность самостоятельной сборки такого стенда, так как предлагаемые готовые устройства на электротехническом рынке дороги для среднестатистического предпринимателя, а также рассмотрим несколько комплексов проверки характеристик срабатывания автоматических выключателей для понимания того, какими качествами должен обладать данный проверочный стенд.

    Владельцам испытательных стендов и комплексов для проверки характеристик срабатывания автоматических выключателей следует помнить, что протоколы проверки может выдавать специально аттестованная электролаборатория, имеющая в своём арсенале аттестованную методику проведения таких измерений, лицензию ростехнадзора на выполнение таких измерений, специально обученный и прошедший проверку знаний персонал. Вы же можете выдавать потребителю только акты о том, что автоматы прошли проверку характеристик срабатывания, эти характеристики соответствуют заводским, и устройства в целом пригодны для использования по назначению. Т.е. вы выдаёте АКТ о проверке соответствия автоматического выключателя заводским характеристикам срабатывания, но не протокол.

    Рассмотрим специально разработанные комплексы, выпускаемые промышленностью для целей проверки характеристик автоматов.

    Вот, например, изображение устройства для проверки характеристик срабатывания автоматических выключателей Сатурн М2, производства компании Радиус-Автоматика. Таким устройстом можно проверять автоматические выключатели с уставкой отключения до 2500А.

    Конструктивно устройство состоит из нагрузочного трансформатора, измерительного трансформатора тока и блока управления. Блок управления, в свою очередь, содержит в себе тиристорный регулятор испытательного тока, органы измерения и органы управления программой проверки. Вся проверка автоматизирована. От оператора требуется собрать схему подключения проверяемого автомата, ввести необходимые параметры проверки, запустить саму процедуру проверки автоматического выключателя, которая происходит по специальной программе. Результаты проверки отобразятся на жидкокристаллическом дисплее устройства. Сатурн-М2 позволяет проводить проверку срабатывания индуктивного (мгновенного), а также теплового расцепителя автоматического выключателя, с фиксацией тока и времени срабатывания защитного устройства.

    На рисунке ниже изображено устройство АП-0,2к — аппарат прогрузочный (до 63 А).

    Этот аппарат попроще. Предназначен для проверки автоматических выключателей на ток до 63А.

    Кстати, цена такого «простого» устройства на рынке варьируется в пределах 50 т.руб. Цена, например, того же Сатурн-М2 на момент написания статьи составляет 150 т.рублей, что как бы делает нерентабельным его для приобретения в мелкооптовый магазин. Хотя, хочется сказать, предприниматели разные, и кому то подобное устройство может достаться «по блату» с большой уценкой.

    Работу данных устройств для проверки характеристик срабатывания автоматических выключателей можно представить следующим образом:

    1. Проверка теплового расцепителя. После включения и подключения проверяемого автомата к устройству проверки оператор включает устройство и вводит параметры проверки автомата. При выборе параметров указывается максимальное время проверки и ток. После запуска программы проверки устройство начинает кратковременно подавать возрастающие по величине токовые импульсы, проверяя таким образом отсутствие ложного срабатывания магнитного расцепителя, после достижения проверочных импульсов велечины проверяемого тока устройство начинает непрерывно подавать ток через автомат. После отключения автоматического выключателя устройство фиксирует время срабатывания и индицирует значение тока, при котором проводилась проверка. Так проверяется каждая точка диаграммы время-токовой характеристики автомата. Исправный автоматический выключатель в пяти произвольных точках проверки на диаграмме должен отключаться с небольшой погрешностью, иначе выключатель бракуется.

    Диаграмма время-токовой характеристики имеет вид:

    На данном рисунке представлены характеристики срабатывания автоматических выключателей класса «В» и «С». Есть ещё характеристики «А» и «D», но об этом поговорим в одной из следующих статей.

    2. Проверка магнитного расцепителя мгновенного действия. Как видно на рисунке выше (по характеристике класса «С», например), начиная с 5 номинальных значений тока характеристика срабатывания по времени резко изменяется. Это граница между действием теплового и магнитного расцепителя. Соответственно, чтобы проверить именно магнитный расцепитель необходимо подавать короткие импульсы длительностью до 100 миллисекунд, иначе произойдёт нагрев и срабатывания по теплу. Поэтому оператор выберает другую программу проверки, которая не подразумевает длительной подачи испытательного тока. Устройство с постоянным шагом подаёт увеличивающиеся по значению токовые импульсы, в конечном итоге какого то импульса хватает для срабатывания магнитного расцепителя, автомат отключается, устройство фиксирует ток отключения (т.е. ток последнего токового импульса). Время срабатывания сдесь не критично, так как срабатывание автомата менее одной секунды после подачи испытательного тока считается мгновенным.

    Данные устройства проверки предназначены для проверки автоматических выключателей переменного тока частотой 50 Гц, так как испытательный получается преобразованием тока бытовой сети без преобразования частоты.

    Для справки: Практически все бытовые автоматические выключатели производятся для работы в сетях переменного тока 50Гц напряжением 220В(380В). Вряд ли Вам придётся иметь дело с автоматическими выключателями постоянного тока. В быту им не находится практического применения.

    Теперь поговорим о технической реализации нашего проверочного стенда.

    Но для начала отвлечёмся от темы. Так как автор статьи утверждает, что нам подойдёт любой источник переменного тока 50Гц с напряжением 5-10 вольт, некоторые скажут, а как же напряжение сети 220В? Отвечу — напряжение источника не играет никакой роли, за исключением того, что слишком маленький потенциал (напряжение) между его выводами не сможет «продавить» большой ток на автоматический выключатель для проверки его срабатывания. Почему же напряжение источника тока не влияет на снятие характеристик срабатывания автоматического выключателя? Всё просто — в цепи с источником переменной ЭДС и сопротивлением нагрузки автоматический выключатель включен последовательно. А значит решающее значение здесь имеет его собственное сопротивление, т.е. сопротивление контактной группы, пластины теплового и катушки индуктивного расцепителя. По закону Ома для участка цепи получаем постоянное падение напряжения на самом автоматическом выключателе, при нектором постоянном значении протекающего тока (которое, как вы понимаете, никак не равно 220В).

    Источник переменного тока.

    Это самый ответственный узел нашего с вами стенда. От его правильного выбора будет зависеть качество проверки характеристик автоматических выключателей, а также максимальный предел проверяемых характеристик по току.

    Исходя из изображений готовых устройств можно понять основной функционал, назначение блоков и техническую реализацию данных дорогостоящих устройств.

    Функционально схему испытательного устройства можно представить в виде следующих блоков:

    Источником переменного тока будет служить бытовая сеть

    220В. Регулирующим органом может послужить школьный реостат на 1000 Ом. Прогрузочным трансформатором может послужить переделанный трансформатор блока питания старого телевизора, в котором переделывается вторичная обмотка под провод большого сечения с малым количеством витков. Идеально подойдёт сварочный трансформатор (не инвертор). В качестве амперметра может (если не удалось найти стрелочный амперметр) подойдёт многофункциональный измерительный прибор типа Мастер.

    Кстати, при использовании сварочного трансформатора не нужно будет придумывать регулирующий реостат. Трансформатор конструктивно содержит в себе регулятор тока. Согласитесь, стоимость сварочного трансформатора куда ниже даже самого дешёвого проверочного устройства. Единственное конструктивное изменение, которое придется сделать, это намотать проводом большого сечения несколько витков в качестве вторичной обмотки трансформатора. Благодаря таким преобразованиям ток с такого сварочного можно получить до 1000А. Мы не будем приводить здесь точное количество витков, так как все сварочные трансформаторы разные по мощности, соответственно имеют разное количество ампер-витков.

    Пример того, как выглядит стандартный сварочный трансформатор до 200А.

    Для измерения протекающего тока по вторичной обмотке необходимо использование измерительных трансформаторов тока.

    Пример того, как выглядит измерительный трансформатор тока.

    Рекомендации по поводу выбора коэффициента трансформации трансформаторов тока выдавать не будем. Всё зависит от максимально возможного тока устройства. Для примера, со сварочным трансформатором переделанным под ток 1000А необходимо использовать трансформаторы тока 1000/5. Трансформаторы тока могут работать с перегрузкой, но так как практически все они измерительные и имеют высокий класс точности, вольт-амперная характеристика их рано изгибается, что говорит об их раннем насыщении, а значит измерить ток превышающий номинальный будет невозможно.

    В следующей статье поговорим о схематичной реализации данного стенда. В третьей статье из цикла рассмотрим приёмы техники безопасности при работе с данным стендом. В четвёртой статье попробует измерить характеристики срабатывания автоматического выключателя 63А.

    Надеюсь, статья вам понравилась. Пишите в комментариях свои замечания и предложения. Возможно, основываясь на ваших замечаниях устройство удасться сделать лучше.

    Выбор автоматических выключателей для электродвигателей

    Первое, на что нужно обратить внимание при выборе, это категории применения — режимы срабатывания расцепителя. Электродвигатель — сложный механизм с пусковым током и повторно-кратковременными включениями, при которых он работает не в штатном режиме. При этом нагрузка на сеть также отличается от номинальной, и механизм расцепления должен нормально срабатывать в нестандартных условиях.

    Для переменного тока категории применения обозначаются маркировкой AC. Отличаются характером срабатывания:

    • AC-1 — для электрических моторов с активной или малоиндуктивной нагрузкой;
    • AC-2 — старт с фазным ротором, реверсивное торможение;
    • AC-3 — прямой пуск короткозамкнутого ротора, отключение вращающихся двигателей;
    • AC-4 — пуск и остановка электромоторов с короткозамкнутым ротором посредством противовключения. Для такого режима применяются спаренные (реверсивные) контакторы с механической блокировкой, не допускающей одновременного запуска нескольких потребителей. При этом уменьшается In и базовое количество циклов.

    Для постоянного существуют собственные категории — DC:

    • DC-1 (аналог AC-1) — активная или малоиндуктивная нагрузка;
    • DC-2 — пуск электродвигателей с параллельным возбуждением, отключение при номинальной частоте вращения;
    • DC-3 — запуск моторов с параллельным возбуждением, отключение при медленном вращении ротора или в неподвижном состоянии;
    • DC-4 — пуск электродвигателей с последовательным возбуждением и остановка при номинальных оборотах;
    • DC-5 — старт двигателей с последовательным возбуждением и остановка с неподвижным или медленно вращающимся ротором, торможение противотоком.

    Промышленные электромоторы с частыми пусками должны поддерживать категорию AC-3, AC-4 — для переменного электротока, и DC-3, DC-4, DC-5 для постоянного.

    Назначение

    Автомат защиты двигателя ставится первым звеном в питающей сети мотора. Далее располагается электромагнитный пускатель, после может дополнительно использоваться тепловое реле. Современные модели имеют возможность подстройки тока отсечки.

    автомат защиты двигателя

    Чаще рассматриваемые типы автоматов используют для защиты двигателей трехфазного исполнения. Каждая обмотка цепляется на свой контакт, но отключение прибора происходит по всем фазам. Этот принцип работы отличает устройство от выключателей типов B и C. Оборотистые двигатели стартуют под нагрузкой в тяжёлых условиях. При этом пусковой ток часто превышает номинал до 6 раз. Обычные выключатели сработают моментально, автомат же отключится только после устойчивого роста силы тока.

    Номинальный ток и напряжение питания катушки управления

    Номинальный ток — наиболее значимый параметр, подбираемый по мощности потребителя. Главный вопрос: как правильно считать? Любой электродвигатель при запуске кратковременно выдает мощность, часто в 5-7 раз превышающую номинальную. Тем не менее такая нагрузка сохраняется долю секунды и на работу расцепителя не влияет. Исходя из этого, берем во внимание только номинальную мощность.

    Для определения номинала необходимо рассчитать In . В этом нам поможет формула из учебника по физике: In = P/(U √3xcosφ), где P — мощность (Вт), U — напряжение (В), а cosφ- коэффициент мощности двигателя.

    Для наглядности рассмотрим конкретный пример: предположим, что у Вас трехфазный станок на 5,5 кВт c cosφ= 0,8 (данное значение записано в паспорте электрооборудования). При включении, по сети будет протекать:

    5500Вт / (380Вx√3×30,8)= 10,6А.

    К полученному значению еще необходимо прибавить 30% запаса, в итоге оптимальным номиналом будет 13А.

    Например, если In будет равен 11,8А, ни в коем случае нельзя брать модель на 12А, иначе при увеличении мощности она сгорит.

    Электропитание катушки управления подбирается по двум критериям: тип электротока (переменный или постоянный) и напряжение (от 12В до 440В — постоянный, от 12В до 660В — переменный при частоте 50 Гц и от 24В до 660В — переменный при 60 Гц). Существуют также универсальные модели с катушкой работающей и от переменного, и от постоянного тока.

    Конструкция и особенности работы

    Выключатели для защиты электродвигателей оснащены комбинированными расцепителями, которые могут быть нескольких типов:

    • термомагнитные расцепители за счет наличия фиксированной токовой установки защищают оборудование от замыканий;
    • тепловые расцепители предотвращают перегрузки электрических двигателей за счет компенсации колебания температур окружающей среды.

    Автоматические выключатели можно дополнительно оснастить независимым расцепителем. В таком случае можно будет осуществлять их дистанционное отключение. На лицевой панели выключателей обычно имеется регулировочный диск, с помощью которого можно задать номинальный ток двигателя. Надежный корпус и качественная изоляция выводов обеспечивает безопасную работу людей с устройством: защищает от негативного влияния токоведущих контактов прибора.
    Большинство современных автоматов для защиты электродвигателей могут быть запущены в ручном режиме, если произойдет аварийное размыкание сети при скачках напряжения. Независимо от типа исполнения устройства (открытого или закрытого), находящиеся в выключенном положении автоматы можно будет заблокировать. Кроме того, их можно оградить от несанкционированного включения, отключения или изменения режима. Монтаж автоматических выключателей для защиты электродвигателей можно производить при помощи винтов, стандартной шины или рейки.

    Механическая и коммутационная износостойкость

    Данная характеристика показывает предельное количество циклов включения-выключения — срабатываний расцепителя. Чем их больше, тем дольше будет срок службы. Это значение особенно важно для двигателей с частыми пусками.

    Механическая износостойкость показывает количество включений-выключений при отсутствии напряжения. Как правило, средний механизм выдерживает около 10-20 млн. операций.

    Коммутационная износостойкость определяет допустимое количество циклов срабатывания и зависит от категории применения. Например, если контактор в режиме AC-3 может переносить 1,7 млн циклов, то в AC-4 — 200 тыс. Как правило, данную характеристику производитель всегда указывает в техническом паспорте.

    Коммутационная износостойкость делится на три класса:

    • А — самый высокий, гарантирует от 1,5 млн. до 4 млн. операций срабатывания магнитного пускателя в рабочем режиме;
    • Б — средний, модели данного класса выдерживают от 630 тыс. до 1,5 млн. переключений;
    • В — самый низкий, количество циклов от 100 тыс. до 500 тыс.

    Функциональные возможности

    Ниже приведены типичные функции, выполняемые магнитными пускателями, далеко не исчерпывающие сферы их применения:

    • Управление асинхронными электродвигателями в приводах механизмов промышленного назначения.
    • Включение наружного (уличного) городского освещения, наружной и внутрицеховой подсветки промышленных объектов.
    • Коммутация электронагревательных приборов (ТЭНов или инфракрасных обогревателей) систем электрического отопления.
    • Использование в качестве пусковых органов в цепях промышленной автоматики.

    Выбор магнитных пускателей производится при проектировании схем управления и автоматики, либо в процессе их ремонта, когда для замены устаревшего или отсутствующего аппарата необходимо выбрать его аналог.

    Критерии выбора

    При выборе необходимого электрического аппарата рассматриваются его технические характеристики и конструктивные особенности. Остановимся на главных из них.

    Как подобрать магнитный пускатель для электродвигателя

    Номинальное напряжение коммутируемой цепи. Наиболее часто магнитные пускатели применяются для запуска асинхронных двигателей с короткозамкнутым ротором на промышленное напряжение 220/380 Вольт. Именно на такой выбор рассчитано большинство выпускаемых моделей коммутационных аппаратов. При использовании аппаратов для электродвигателей на 380/660 Вольт, встречающихся значительно реже, необходимо выбрать пускатель соответствующего напряжения.

    Номинальный ток основных контактов. Сопоставление тока подключаемой нагрузки с номинальным током коммутационного аппарата – одно из первых действий при выборе последнего. Магнитные пускатели, выпускаемые в РФ по советским ГОСТам, например ПМЛ, условно классифицируются по величинам, соответствующим номинальному току аппарата. Ниже представлена таблица соотношений величин и номинальных токов. По ней можно правильно выбрать магнитный пускатель по току, либо по мощности, произведя пересчет по формуле.

    Функции защитных устройств электродвигателей

    Современные защитные устройства, или другими словами, автоматы защиты электродвигателя, (мотор автоматы), часто совмещаются в одном корпусе с коммутационными аппаратами запуска (пускателями) и выполняют такие функции:

    • Защита от тока короткого замыкания в цепи питания или внутри электродвигателя;
    • Защита от длительных перегрузок, связанных с превышением механической нагрузки на валу двигателя;
    • Предохранение от асимметрии (дисбаланса) фаз, или обрыва фазного провода;


    Современные мотор автоматы с ручным управлением


    Мотор автомат с ручной настройкой и автоматическим управлением
    Ранее и до недавнего времени наиболее используемой схемой защиты электродвигателей было подключение в корпусе пускателя теплового реле, последовательно с контактором. Биметаллическая пластина теплового реле при длительной перегрузке нагревается и прерывает цепь самоподхвата контактора. Кратковременное превышение номинальной нагрузки при запуске мотора является недостаточным для нагрева и срабатывания биметаллической пластины. Более подробно о тепловом реле и его подключении можно прочитать в соответствующем разделе данного ресурса.


    Контактор электромотора с тепловым реле

    Подбор автоматического выключателя

    Поскольку первые две функции могут осуществляться обычными автоматическими выключателями, многие пользователи применяют их для защиты своих электродвигателей. Основным недостатком такого способа является отсутствие защиты от дисбаланса, обрыва фаз и скачков напряжения. Выбор защитного автомата осуществляется по его время токовой характеристике и по максимальному пусковому току электродвигателя.


    Трехфазный автоматический выключатель

    Чтобы правильно подобрать автоматический выключатель по категории и номинальному току, нужно изучить его время токовую характеристику, о которой подробно рассказывается на одной из страниц данного сайта. Категории автоматов (А, B, C, D) определяются соотношением тока отсечки электромагнитного расцепителя к номинальному значению. Нужно иметь в виду, что время токовая характеристика категории не зависит от номинала автоматического выключателя.


    Времятоковая характеристика автоматических выключателей категории «C»

    Для предотвращения ложного срабатывания автоматического выключателя при запуске электромотора необходимо, чтобы кратковременный пусковой ток (Iпуск) не превышал значение отсечки (мгновенного срабатывания, Iмгн.ср) автомата. Отношение пускового (Iпуск) и номинального тока (In) можно узнать из бирки или паспорта электродвигателя, максимальное значение Iпуск/ In=7.

    Если известна только мощность электродвигателя, то рассчитать номинальный ток можно по формуле In= Рn/(Un*√3*η*cosφ), где Рn – мощность, Un – напряжение, η – КПД, cosφ – коэффициент реактивной мощности двигателя.


    Бирка двигателя с указанием мощности

    Практические расчеты

    На практике применяют поправочный коэффициент надежности Kн, который для автоматов с In<100A равен 1,4, а для In>100A принимают Kн=1,25. Поэтому должно соблюдаться условие Iмгн.ср ≥ Kн * Iпуск. Вначале автомат выбирают, исходя из наиболее близкого значения номинального тока автоматического выключателя IAB (указывается на корпусе) к рабочему току двигателя (In). Необходимое условие: IAB > In/Кт, где Кт = 0,85 – температурный коэффициент, если автомат устанавливается в шкафу или щитке, иначе Кт=1.

    Например, имеется двигатель мощностью 5,5 кВт, η = 85%=0,85; cosφ = 0,8; Iпуск/ In = 7. Вначале нужно рассчитать In­ = Рn/(Un*√3*η*cosφ) = 5500/(380*√3*0,85*0,8) = 12,28 (А). Допустим, автомат устанавливается в шкаф, Кт = 0,85, значит In/Кт = 12,28/0,85 = 14,44 (А). Наиболее близким является автоматический выключатель на 16А, категории С, (ток мгновенного срабатывания в десять раз превышает номинальное значение).


    При расчетах понадобится калькулятор

    Теперь нужно проверить условие Iмгн.ср ≥ Kн * Iпуск. Мгновенное срабатывание защитного автомата наступает при Iмгн.ср = 16*10 = 160 (A), пусковой ток Iпуск= In*7 = 12,28*7 = 85,96 (А). Умножаем на Kн (1,4) — 85,96*1,4 = 120,3 (А). Проверяем условие 160 ≥ 120,3 — это значит, что автомат выбран верно. Для упрощенных расчетов, можно принимать номинальный ток двигателя, равным удвоению его мощности, выраженной в киловаттах.

    Независимый расцепитель

    В каждой электрической цепи устанавливаются различные защитные устройства. Довольно часто в дополнение к ним используется независимый расцепитель, связанный с автоматическим выключателем механическим способом. В случае возникновения условий, грозящих повреждениями приборам и самой линии, он своевременно разрывает электрическую цепь. Обычно это происходит при коротком замыкании, пробоях и утечках, а также росте силы тока выше номинальных пределов, опасных для кабелей и проводов.

    Общее устройство расцепителя и схема подключения

    Каждый независимый расцепитель представляет собой устройство, с помощью которого выполняется дистанционное отключение защитной аппаратуры. Как правило, он используется в связке с различными автоматическими выключателями – с одним, двумя, тремя или четырьмя полюсами. Обычно расцепитель подключается к вводному автомату и при возникновении аварийной ситуации производит полное обесточивание щитка.

    Независимый расцепитель

    Конструкция расцепителя выполнена в виде электромагнита. Когда на него поступает кратковременный импульс, прибор специальным рычагом оказывает воздействие на механизм, отключающий автоматическое защитное устройство. Электромагнитные катушки, используемые в конструкции, могут быть разные, рассчитанные на переменный или постоянный ток напряжением 12-60 В и 110-415 В, в соответствии с той или иной модификацией. Крепление к автомату также зависит от конкретной модели и выполняется на правую или левую сторону. От правильного соединения расцепителя с защитным устройством зависит четкое срабатывание всей системы.

    Нормальная работа обоих приборов во многом зависит от соблюдения всех требований схемы подключения. Например, фазные проводники должны подключаться от нижних фазных клемм автомата. При несоблюдении этого условия высока вероятность выхода из строя, неправильно подключенного расцепителя. В норме автоматический выключатель с независимым расцепителем должен отключиться, а напряжение с катушки прибора исчезнуть.

    Дистанционное управление срабатыванием осуществляется с помощью замыкающего контакта одного из приборов пожарной сигнализации или путем нажатия обычной кнопки с замыкающими контактами. По аналогичной схеме производится отключение сразу нескольких расцепляющих устройств, распределенных по отдельным группам.

    Независимый расцепитель для автоматических выключателей

    Как уже отмечалось, данное устройство является дополнительным защитным элементом электрической цепи. С его помощью осуществляется дистанционное отключение автоматов или выключателей нагрузки.

    Наибольшее распространение независимый расцепитель получил при составлении проектов вентиляционных систем. В соответствии с нормативными документами, в случае возникновения пожара, вентиляция должна быть очень быстро отключена. Поэтому к вводному автомату, установленному в щите, обслуживающем вентиляционную систему, дополнительно подсоединяется независимый расцепитель.

    В электрические щиты, рассчитанные на ток до 100 ампер, устанавливаются модульные автоматы. Общий ввод в большинстве случаев защищен выключателем нагрузки. Именно к нему и подключается независимое расцепляющее устройство, выполняющее отключение при нештатных ситуациях. Если же ток на входе составляет свыше 100 А, требуется установка более мощного автоматического выключателя. К нему же можно подобрать наиболее подходящий независимый расцепитель.

    С помощью этого прибора возможно отключение не только однофазной, но и трехфазной аппаратуры. Для того чтобы расцепитель начал действовать, вполне достаточно одной подачи импульса напряжения на его катушку. Возвращение расцепителя в исходное состояние осуществляется с помощью кнопки «возврат». Ее нажатие вручную указывает на дистанционное отключение, а не срабатывание в результате короткого замыкания.

    Срабатывание независимых расцепителей может произойти по разным причинам. Наибольшее распространение получили следующие:

    • Чрезмерные скачки напряжения в сторону увеличения или уменьшения.
    • Нарушение установленных параметров, изменение состояния электрического тока.
    • Сбой в работе автоматов, невозможность выполнения ими своих функций.

    Существуют аналогичные отключающие устройства, используемые совместно с автоматическими выключателями. Они выполняют те же самые функции, но по принципу работы являются тепловыми и электромагнитными.

    Тепловые расцепители автоматов

    Основным элементом тепловых расцепляющих устройств служит биметаллическая пластина. Она изготовлена из двух металлов, каждый из которых имеет собственный коэффициент теплового расширения.

    Оба металла спрессованы между собой и во время нагрева у них возникает различная степень расширения, что в свою очередь вызывает деформацию и искривление пластины. Если ситуация с током не придет в норму на протяжении определенного периода времени, то пластина под действием повышающейся температуры коснется контактов автомата, отключая электрическую цепь.

    Таким образом, срабатывание теплового расцепителя вызывается повышением температуры пластины под действием чрезмерной нагрузки на каком-либо участке, находящемся под защитой автомата. То есть, к проводу или кабелю с определенным сечением, можно подключить строго лимитированное количество приборов и оборудования. При попытке включения еще одного устройства, общая мощность приборов превысит ее допустимое значение для данного кабеля. Сила тока начнет расти и вызовет нагрев проводника. Сильный перегрев нередко приводит к расплавлению изоляционного слоя и возгоранию.

    Подобная ситуация предотвращается работой теплового расцепителя. Нагрев биметаллической пластины происходит вместе с проводом, и через некоторое время ее изгиб, воздействуя на автомат, отключает подачу тока. После остывания защитное устройство включается вручную с предварительным отключением приборов, вызвавших перегрузку. Без этой процедуры автомат вновь отключится через некоторое время.

    Использование теплового расцепителя требует точного соответствия номинала автомата сечению данного кабеля. Несоблюдение этого условия приведет к срабатываниям даже при нормальных нагрузках. И, наоборот, при опасном превышении тока расцепитель не среагирует и проводка выйдет из строя.

    Автоматы с электромагнитными расцепителями

    Отключающиеся устройства, в которые входит независимый расцепитель и тепловой расцепитель, дополняется электромагнитным устройством с аналогичными функциями.

    Необходимость их использования продиктована спецификой тепловых расцепителей, которые не могут срабатывать мгновенно и выполняют отключение лишь в течение одной секунды и более. В связи с этим, они не могут обеспечить эффективную защиту от коротких замыканий. Поэтому в дополнение к тепловому, устанавливается еще одно расцепляющее устройство – электромагнитное.

    Конструкция электромагнитных устройств состоит из катушки индуктивности – соленоида и сердечника. В обычном рабочем режиме цепи электроны проходят через соленоид и образуют слабое магнитное поле, не влияющее на общую работоспособность сети. Когда возникает короткое замыкание, сила тока мгновенно увеличивается во много раз. Одновременно наблюдается пропорциональный рост мощности магнитного поля. Под его воздействием происходит мгновенный сдвиг сердечника, оказывающего воздействие на отключающий механизм. Тем самым предотвращаются серьезные последствия от действия сверхтоков коротких замыканий.

    Как проверить исправность и работоспособность расцепителя

    Данная проверка должна выполняться только квалифицированными специалистами. Действия выполняются в следующем порядке:

    • Визуальный осмотр поверхности корпуса на предмет сколов, трещин и прочих дефектов.
    • Сделать несколько щелчков выключателем. Рычажок должен легко становиться во все положения.
    • На следующем этапе нужно выполнить так называемую прогрузку устройства, путем создания неблагоприятных условий. Для этого потребуется специальная аппаратура и присутствие квалифицированного электротехника. Основным показателем тестирования является временной промежуток с момента возрастания тока и до полного отключения устройства. Точно такая же процедура производится на приборе со снятым корпусом.
    • Во время проверки теплового расцепителя, нужно обязательно установить время, необходимое, чтобы отключить устройство, находящееся под влиянием повышенной силы тока.

    голоса
    Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector