Ele-prof.ru

Электро отопление
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Характеристика срабатывания автоматических выключателей и параметры токовременной работы, время срабатывания

Характеристика срабатывания автоматических выключателей и параметры токовременной работы, время срабатывания

Автоматический выключатель – это прибор, который отвечает за защиту электроцепи от повреждений, которые принесет ток большой величины.

Автоматические выключатели характеристики

Чтобы этого избежать, по правилами устройства электроустановок, требуется устанавливать электрические автоматы защиты. Автоматические выключатели делятся по категориям защиты.

Что это такое

автоматические выключатели характеристики

Автомат, защищающий сеть, несет 2 задачи:

  • вовремя определить слишком большой ток;
  • разорвать цепь до того, как возникнет повреждение.

Главная задача автоматического выключателя – отреагировать на появление чрезмерного тока и обесточить сеть. Опасно влияют на сеть 2 вида токов:

  • ток перегрузки, возникающий из-за включения большого количества приборов в сеть;
  • сверхтоки из-за короткого замыкания.

Современные электромагнитные устройства легко и безошибочно определяют ток короткого замыкания и выключают нагрузку. С током перегрузки проблем больше. Они не сильно отличаются от номинального значения и в течение некоторого промежутка времени протекают без последствий. Проблема заключается в наличии предельного значения тока нагрузки, который и вредит сети.

Область применения

автоматические выключатели характеристики

Применяются автоматические выключатели везде, где находятся электронные приборы. Устанавливаются и в бытовых условиях (для защиты квартир, частных домов), на производственных предприятиях, в бизнес-центрах, торговых комплексах.

Устройство, маркировка и технические характеристики

  • номинальный ток – величина тока, которая протекает по автомату без ограничения времени при температуре воздуха +30 С (при большей температуре номинальный ток будет ниже);
  • время-токовая характеристика – зависимость времени срабатывания от силы тока.
  • номинальное напряжение;
  • предельная коммутационная способность.

автоматические выключатели характеристики

Автоматические выключатели обладают своим набором характеристик. Для ознакомления с ними на корпусе наносится маркировка из букв и цифр. В маркировке указываются:

  • фирма-изготовитель;
  • линейная серия;
  • время-токовая характеристика – указывается латинской буквой B, C, D, K, Z;
  • номинальный ток – указывается после буквенного значения;
  • номинальное напряжение;
  • предельный ток отключения;
  • класс токоограничителя;
  • схема подключения, обозначения клемм.

Дополнительно указывают поправочные коэффициенты, связанные с превышением температурного режима.

1 полюс

автоматические выключатели характеристики

Однополюсный выключатель устанавливается на вход каждой линии однофазной цепи. Это простая модификация автомата. Устанавливается для защиты однофазной, двухфазной и трехфазной проводки. Задача – защита от возгорания.

2 полюса

Используются, где идет питание электрооборудования по двум проводам и требуется одновременная коммутация двух полюсов. Существует 2 вида двухполюсников – 2Р и 1P+N. Первый оснащен защитой обоих полюсов от перегрузок и короткого замыкания. При подключении нет разницы куда подключать ноль, а куда – фазу. Второй тип называют «однофазный с нулем» – функция автоматического защитного срабатывания только в «фазном» полюсе. Второй полюс используется для подключения нулевого провода.

3 полюса

Защищает трехфазную цепь или одновременно три однофазных колодки. Используются для защиты электродвигателей.

4 полюса

Чаще используются в схемах «звезда с выделенной нулевой точкой». В таких схемах разделены защитный и рабочий нули.

Предельная коммутационная способность

автоматические выключатели характеристики

Это максимальное значение сверхтока, которое выдержит автомат, не теряя работоспособности. Наиболее распространенные выключатели имеют величину 4500, 6000 и 10000 А.

Сверхток возникает, когда в цепи происходит короткое замыкание. Он протекает между фазой и нулем при оборванной изоляции, минуя потребителя. Сила тока зависит от сопротивления проводки, поэтому необходимо учитывать материал, из которого она выполнена. Для домов со старой алюминиевой проводкой лучше использовать автоматы с пределом 4500 А. Для медной проводки используются автоматы с пределом 6000 А.

Класс токоограничения

Когда появляются сверхтоки, изоляция резко нагревается. При максимальном значении тока автомат разъединяет цепь. За это время изоляция может повредиться, поэтому вводится еще одна характеристика, контролирующая ток.

Класс токоограничения влияет на безопасность всей схемы. Физически это промежуток времени, при котором происходит размыкание контактов и гашение дуги в гасительной камере. Выделяют 3 класса:

  • 3 класс – самый быстрый, время гашения составляет 2,5 мс;
  • 2 класс – время гашения 6-10 мс;
  • 1 класс – время гашения превышает 10 мс.
Читайте так же:
Ток электродинамической стойкости выключателя это

На устройстве это значение указывается в черном квадрате. 1 класс не обозначается на устройстве.

Классы (характеристики срабатывания) автоматических выключателей

автоматические выключатели характеристики

Классы или характеристики срабатывания определяются от разброса величины срабатывания. Самые используемые классы – B, C и D

Используется в бытовых, осветительных и других сетях с небольшим или нулевым пусковым превышением тока. Такие автоматы устанавливаются непосредственно у потребителя. Электромагнитный расцепитель в таких приборах срабатывает при превышении тока в 3 и более раз.

Рекомендуется устанавливать в сетях со смешанной нагрузкой с умеренными пусковыми токами. Также используются в бытовых сетях, но защищают группу потребителей. Самый популярный автомат у электриков. Отличаются большей перегрузочной способностью по сравнению с устройствами класса B. Минимальный ток срабатывания должен превышать номинал в 5 и более раз.

Устройства данного класса защищают электродвигатели, у которых пусковой ток значительно превышает номинальный. Отличаются большой перегрузочной способностью. Минимальный ток срабатывания равен десяти номинальным.

Устройства для цепей для постоянного напряжения

автоматические выключатели характеристики

Конструкция электромагнитных катушек переменного напряжения отличается от постоянного напряжения. Для защиты таких устройств используются специальные автоматические выключатели. От обычных они отличаются маркировкой полярности на корпусе, которую нужно обязательно соблюдать. Принцип работы у обоих приборов одинаков.

Как выбрать

Основные критерии выбора автомата:

автоматические выключатели характеристики

  1. Ток короткого замыкания. Выбирается в соответствии с правилами устройства электроустановок, по которым приборы с отключающей способностью менее 6 кА запрещены. В настоящее время используются автоматы с номиналом 3, 6, 10 кА. Для домов, находящихся рядом с трансформаторной станцией, следует выбирать выключатель, срабатывающий при 10 кА.
  2. Рабочий ток. Выбирается с учетом сечения кабеля, материала, мощности потребления энергии. Подобрать нужный прибор можно по таблицам.
  3. Ток срабатывания. При включении устройства начальное значение может быть значительно выше рабочего, и, чтобы автомат не сработал, нужно правильно его выбрать. В дома и квартиры устанавливаются устройства класса B, при наличии мощной плиты или электрокотла лучше брать автоматы класса C. Для частных домов, в которых есть установки с электродвигателями, выбираются выключатели класса D.
  4. Селективность, т.е. отключение при аварийной ситуации только определенного проблемного участка, а не всего электричества в доме.
  5. Количество полюсов.
  6. Фирма-изготовитель. Покупка дешевого аппарата – может не сработать в нужный момент, что приведет к поломке устройств, износу изоляции и возможному пожару.

Автоматический выключатель – устройство, которое жизненно нужно в каждом доме для защиты от токов большой величины. Такие приборы устанавливаются в жилых домах и в производственных помещениях, и помогают обезопасить здание от поломки приборов и возгорания.

Полезное видео

Переменные резисторы с выключателем в Москве – 331 товар

Комплект резисторов 0,25W 30х20штОтзывы 3 Комплект резисторов 0,25W 30х20шт Подробнее от 350 ₽ данные с Яндекс Маркета
Комплект резисторов и потенциометров для Arduino A1Отзывы 0 Комплект резисторов и потенциометров для Arduino A1 Подробнее от 350 ₽ данные с Яндекс Маркета
Резистор переменный СП-10 А-1Вт-IIОтзывы 0 Резистор переменный СП-10 А-1Вт-II Подробнее от 30 ₽ данные с Яндекс Маркета
3296W-203 20 кОм Резистор подстроечный, потенциометрОтзывы 0 3296W-203 20 кОм Резистор подстроечный, потенциометр Подробнее от 52 ₽ данные с Яндекс Маркета
Потенциометр фейдер (переменный резистор) 10КОмОтзывы 0 Потенциометр фейдер (переменный резистор) 10КОм Подробнее от 260 ₽ в 2 магазинах данные с Яндекс Маркета
Резистор переменный СПЕ-1 07863 А-2Вт М68ВОтзывы 0 Резистор переменный СПЕ-1 07863 А-2Вт М68В Подробнее от 30 ₽ данные с Яндекс Маркета
3296W-102 2 кОм Резистор подстроечный, потенциометрОтзывы 0 3296W-102 2 кОм Резистор подстроечный, потенциометр Подробнее от 217 ₽ в 2 магазинах данные с Яндекс Маркета
Потенциометр с вращением (переменный резистор) 10КОм, угол вращения 300гр.Отзывы 0 Потенциометр с вращением (переменный резистор) 10КОм, угол вращения 300гр. Подробнее от 200 ₽ в 2 магазинах данные с Яндекс Маркета
Резистор переменный СП-10 А-1Вт-II 2,2 МОтзывы 0 Резистор переменный СП-10 А-1Вт-II 2,2 М Подробнее от 30 ₽ данные с Яндекс Маркета
Альтернативный переключатель СВЕТОЗАР SV-54137-A Гамма 10 А, ольхаОтзывы 0 Альтернативный переключатель СВЕТОЗАР SV-54137-A Гамма 10 А, ольха Подробнее от 21 ₽ в 4 магазинах Тип: выключатель / переключатель, цвет: ольха, линейка: Гамма, монтаж: скрытый, подсветка: нет, схема подключения выключателя: альтернативный переключатель, количество гнёзд (постов): 1 шт., ориентация монтажа: вертикальная, материал: пластик, класс защиты: IP20, защитн. данные с Яндекс Маркета
Jp Group 1196850300 (05876 / 0759007 / 1008000032) резистор переменного сопротивленияОтзывы 0 Jp Group 1196850300 (05876 / 0759007 / 1008000032) резистор переменного сопротивления Подробнее от 1 374 ₽ в 3 магазинах данные с Яндекс Маркета
Нагрузочный резистор 1-2АОтзывы 0 Нагрузочный резистор 1-2А Подробнее от 200 ₽ данные с Яндекс Маркета
Резистор ПЭ-50 1кОм 5%Отзывы 0 Резистор ПЭ-50 1кОм 5% Подробнее от 50 ₽ данные с Яндекс Маркета
СВЕТОЗАР SV-55231-2, белыйОтзывы 0 СВЕТОЗАР SV-55231-2, белый Подробнее от 146 ₽ в 4 магазинах Тип: выключатель / переключатель, цвет: белый, монтаж: встраиваемый, схема подключения выключателя: альтернативный переключатель, количество гнёзд (постов): 1 шт., ориентация монтажа: вертикальная, тип подключения проводов: винтовое, ширина устройства: 110 мм, высота ус. данные с Яндекс Маркета
3296W-204 200 кОм Резистор подстроечный, потенциометрОтзывы 0 3296W-204 200 кОм Резистор подстроечный, потенциометр Подробнее от 52 ₽ данные с Яндекс Маркета
Резистор ПТМН-1 270 кОмОтзывы 0 Резистор ПТМН-1 270 кОм Подробнее от 20 ₽ данные с Яндекс Маркета
3296W-503 50 кОм Резистор подстроечный, потенциометрОтзывы 0 3296W-503 50 кОм Резистор подстроечный, потенциометр Подробнее от 52 ₽ данные с Яндекс Маркета
Резистор ПТМН-1Вт 30 кОмОтзывы 0 Резистор ПТМН-1Вт 30 кОм Подробнее от 20 ₽ данные с Яндекс Маркета
3296W-103 10 кОм Резистор подстроечный, потенциометрОтзывы 0 3296W-103 10 кОм Резистор подстроечный, потенциометр Подробнее от 52 ₽ данные с Яндекс Маркета
Резистор ПЭВ 20 1600 Ом 10 %Отзывы 0 Резистор ПЭВ 20 1600 Ом 10 % Подробнее от 20 ₽ данные с Яндекс Маркета
3296W-504 500 кОм Резистор подстроечный, потенциометрОтзывы 0 3296W-504 500 кОм Резистор подстроечный, потенциометр Подробнее от 52 ₽ данные с Яндекс Маркета
Резистор БЛП-0.1 К372Р1 372 ОмОтзывы 0 Резистор БЛП-0.1 К372Р1 372 Ом Подробнее от 20 ₽ данные с Яндекс Маркета
B103 Переменный резистор потенциометр 10KОм SC6080GHОтзывы 0 B103 Переменный резистор потенциометр 10KОм SC6080GH Подробнее от 415 ₽ данные с Яндекс Маркета
Резистор ПЭВ 30 470 Ом 10 %Отзывы 0 Резистор ПЭВ 30 470 Ом 10 % Подробнее от 60 ₽ данные с Яндекс Маркета
3362P-1-201LF 200 Ом Резистор подстроечный, потенциометрОтзывы 0 3362P-1-201LF 200 Ом Резистор подстроечный, потенциометр Подробнее от 217 ₽ данные с Яндекс Маркета
3296W-104 100 кОм Резистор подстроечный, потенциометрОтзывы 0 3296W-104 100 кОм Резистор подстроечный, потенциометр Подробнее от 52 ₽ данные с Яндекс Маркета
Резистор СОАТЭ 12.3729Отзывы 0 Резистор СОАТЭ 12.3729 Подробнее от 90 ₽ Тип: резистор, модель автомобиля: LADA 2106, LADA 2105 данные с Яндекс Маркета
Регулятор скорости/частоты вращения ERA РС-В 2,5АОтзывы 1 Регулятор скорости/частоты вращения ERA РС-В 2,5А Подробнее от 2 185 ₽ в 8 магазинах Тип: регулятор скорости/частоты вращения, номинальный ток: 2.50 А, способ монтажа: встраиваемый, количество фаз: 1 шт., тип включения/управления: кнопка поворотная, цвет: белый данные с Яндекс Маркета
Резистор электровентилятора охлаждения 307 (00-)/C4 (04-) (разъемы сверху, 6,5A/15,5A) LUZARОтзывы 0 Резистор электровентилятора охлаждения 307 (00-)/C4 (04-) (разъемы сверху, 6,5A/15,5A) LUZAR Подробнее от 1 102 ₽ в 5 магазинах данные с Яндекс Маркета

Читайте так же:
Поворотный затвор с одним концевым выключателем

переменные резисторы

маленькие переменные резисторы

РУЧКИ НА ПЕРЕМЕННЫЕ РЕЗИСТОРЫ

200 кОм 0,25 Вт 5% 8X2 мм Резистор углеродистыйОтзывы 0 200 кОм 0,25 Вт 5% 8X2 мм Резистор углеродистый Подробнее от 170 ₽ данные с Яндекс Маркета
Реостат СИМЗ РБ-302 У2Отзывы 0 Реостат СИМЗ РБ-302 У2 Подробнее от 7 390 ₽ Предназначен для регулирования тока при ручной дуговой сварке и наплавке металлов плавящимся электродом от многопостовых сварочных выпрямителей и генераторов постоянного тока напряжением не более 70 В.Может применяться для работы в закрытых помещениях или на открытом во. данные с Яндекс Маркета
82 кОм 0,25 Вт 5% 8X2 мм Резистор углеродистыйОтзывы 0 82 кОм 0,25 Вт 5% 8X2 мм Резистор углеродистый Подробнее от 170 ₽ данные с Яндекс Маркета

Категория переменные резисторы с выключателем для города Москва содержит 331 товар, которые продаются в 33 магазина по цене от 3 руб. до 9483 руб.

Переменные резисторы с выключателем в Москве купить недорого в интернет магазине с доставкой | 40NOG

Постоянный резистор. Номиналы и цветовая маркировка резисторов.

Photo of author

Итак, начнем с основного определения резистора. Резистор — это, в первую очередь, пассивный элемент электрической цепи, который имеет определенное значение сопротивления (оно может быть постоянным и переменным). Предназначен этот элемент для линейного преобразования силы тока в напряжение и наоборот. Ведь как мы помним из закона Ома, напряжение и сила тока связаны друг с другом как раз через величину сопротивления:

Резисторы являются одними из самых широко используемых компонентов. Редко можно встретить схему, в которой бы не было ни одного резистора Основным параметром резистора, как уже понятно из определения, является его электрическое сопротивление, измеряемое в Омах (Ом).

Обозначение резисторов на схеме.

Давайте рассмотрим обозначение резисторов на схемах. Существуют два возможных варианта:

Обозначение резисторов

Кроме того, используются немного измененные символы, которые характеризуют резисторы на схеме по величине номинальной мощности рассеивания. Тут возникает вполне закономерный вопрос — а что это за параметр такой — номинальная мощность рассеивания? При протекании тока через резистор в нем будет выделяться мощность, что приведет к нагреву резистора. И если мощность будет превышать допустимую величину, то резистор будет перегреваться и просто сгорит. Таким образом, номинальная рассеиваемая мощность — это величина мощности, которая может рассеиваться резистором без превышения предельно допустимой температуры. То есть если мощность в цепи будет меньше или равна номинальной, то с резистором все будет в порядке! Итак, вернемся к обозначению резисторов:

Читайте так же:
Автоматический выключатель авв sh202l c16

Номинальная мощность

Вот так обозначаются наиболее часто встречающиеся на схемах резисторы в зависимости от их номинальной рассеиваемой мощности. Тут даже особо нечего дополнительно комментировать

Сопротивление резистора на схемах указывается рядом с условным обозначением, причем единицу измерения обычно опускают. Если увидите на схеме рядом с резистором число 68, то не сомневайтесь ни секунды — сопротивление резистора равно 68 Ом. Если же величина сопротивления составляет, к примеру, 1500 Ом (1,5 КОм), то на схеме будет обозначение «1.5 К»:

Сопротивление резисторов

С этим все просто… Несколько сложнее ситуация обстоит с цветовой маркировкой резисторов. Сейчас мы разберемся и с этим!

Цветовая маркировка резисторов.

Цветовая маркировка

Большинство резисторов имеют цветовую маркировку, такую как на этом рисунке. Она представляет из себя 4 или 5 полос (чаще всего, хотя их может быть, например, и 6) определенных цветов, и каждая из этих полос несет определенный смысл. Первые две полоски абсолютно всегда обозначают первые две цифры номинального сопротивления резистора. Если всего полосок 3 или 4, то третья полоса будет означать множитель, на который необходимо умножить число, полученное из первых двух полос. Когда на резисторе 4 полосы, то четвертая будет указывать на точность резистора. А в случае, когда полос всего пять, то ситуация несколько меняется — первые три полосы означают три цифры сопротивления резистора, четвертая — множитель, пятая — точность. Соответствие цифр цветам приведено в таблице:

Маркировка резисторов

Тут есть еще один немаловажный момент — а какую именно полосу считать первой? Чаще всего первой считается та полоса, которая находится ближе к краю резистора. Кроме того, можно заметить, что золотая и серебряная полосы не могут быть первыми, поскольку не несут информации о величине сопротивления. Поэтому если на резисторе есть полосы этого цвета и они расположены с краю, то можно точно утверждать, что первая полоса находится с противоположной стороны. Давайте рассмотрим практический пример:

Маркировка

Поскольку у нас здесь 5 полос, то первые три указывают на сопротивление резистора. Посмотрев нужные значения в таблице, мы получаем величину 510. Четвертая полоса — множитель — в данном случае он равен 10 3 . И, наконец, пятая полоса — погрешность — 10%. В итоге мы получаем резистор 510 КОм, 10%.

В принципе, если нет желания разбираться с цветами и значениями, то можно обратиться к какому-нибудь автоматизированному сервису, определяющему сопротивление по цветовой маркировке. Там нужно будет только выбрать цвета, которые нанесены на резистор и сервис сам выдаст величину сопротивления и точность.

Итак, с цветовой маркировкой резисторов мы разобрались, переходим к следующему вопросу…

Кодовая маркировка резисторов.

Помимо цветовой маркировки используется так называемая кодовая. Для обозначения номинала резистора в данном случае используются буквы и цифры (четыре или пять знаков). Первые знаки (все, кроме последнего) используются для обозначения номинала резистора и включают в себя две или три цифры и букву. Буква определяет положение запятой десятичного знака, а также множитель. Последний же символ определяет допустимое отклонение сопротивления резистора. Возможны следующие значения:

Читайте так же:
Siemens выключатели розетки каталог

Кодовая маркировка

Для букв, обозначающих множитель возможны такие варианты:

Обозначение множителя

Давайте для наглядности рассмотрим несколько примеров:

Примеры маркировки

С этим типом маркировки мы разобрались, давайте теперь изучим всевозможные способы маркировки SMD резисторов.

Маркировка SMD резисторов.

Для SMD резисторов также существуют разные варианты обозначения номиналов. Итак, давайте разбираться:

  • Маркировка тремя цифрами. В данном случае первые две цифры — это величина сопротивления в Омах, а третья цифра — множитель. То есть величину в Омах нужно умножить на десять в соответствующей множителю степени.
  • Маркировка четырьмя цифрами. Тут все похоже на предыдущий вариант, вот только для обозначения номинала сопротивления в Омах используются первые три цифры, а не две. Четвертая цифра — множитель.
  • Маркировка резисторов двумя цифрами и символом. В данном случае две цифры определяют сопротивление резистора, но не напрямую, а через специальный код. Ниже я приведу таблицу всех возможных кодов. Если на резисторе указан код «02», то из таблицы мы получаем значение 102 Ома. Но и это не является финальным значением сопротивления 🙂 Нужно еще учесть третий символ, который является множителем. Для этого символа возможны такие варианты: S=10 -2 ; R=10 -1 ; B=10; C=10 2 ; D=10 3 ; E=10 4 ;

Таблица соответствия кодов величине сопротивления:

SMD резисторы

Клик левой кнопкой мыши — для увеличения.

В первых двух вариантах маркировки возможно также использование латинской буквы «R» — она ставится для обозначения положения десятичной запятой.

По традиции рассмотрим пару примеров:

Примеры маркировки

Номиналы резисторов.

Сопротивления резисторов не являются произвольными числами. Существуют специальные ряды номиналов, которые представляют из себя значения от 0 до 10. Так вот номиналы резисторов (значения сопротивления) могут иметь величины, которые определяются как значение из соответствующего ряда, умноженное на 10 в целой степени. Рассмотрим основные ряды — E3, E6, E12 и E24:

Номиналы резисторов

Цифра в названии ряда означает количество чисел ряда номиналов в диапазоне от 0 до 10. В ряде E3 — три числа — 1.0, 2.2, 4.7, аналогично, и в других рядах. Таким образом, если резистор из ряда E3, то его номинал (сопротивление) может быть равен 1 Ом, 2.2 Ом, 4.7 Ом, 10 Ом, 22 Ом, 47 Ом … 1 КОм … 22 КОм и т. д. Также существуют номинальные ряды Е48, Е96, Е192 — их отличие от рассмотренного нами ряда состоит лишь в том, что допустимых значений еще больше 🙂

На этом заканчиваем нашу статью! Мы рассмотрели основные моменты, которые будут важны при работе с резисторами, а в одной из следующих статей мы продолжим эту тему, и на очереди будут переменные резисторы. Следите за обновлениями и заходите на наш сайт!

Использование термисторов для ограничения бросков тока в источниках питания

Часто в различных источниках питания возникает задача ограничить стартовый бросок тока при включении. Причины могут быть разные – быстрый износ контактов реле или выключателей, сокращение срока службы конденсаторов фильтра итд. Такая задача недавно возникла и у меня. В компьютере я использую неплохой серверный блок питания, но за счет неудачной реализации секции дежурного режима, происходит сильный ее перегрев при отключении основного питания. Из-за этой проблемы уже 2 раза пришлось ремонтировать плату дежурного режима и менять часть электролитов, находящихся рядом с ней. Решение было простое – выключать блок питания из розетки. Но оно имело ряд минусов – при включении происходил сильный бросок тока через высоковольтный конденсатор, что могло вывести его из строя, кроме того, уже через 2 недели начала обгорать вилка питания блока. Решено было сделать ограничитель бросков тока. Параллельно с этой задачей, у меня была подобная задача и для мощных аудио усилителей. Проблемы в усилителях те же самые – обгорание контактов выключателя, бросок тока через диоды моста и электролиты фильтра. В интернете можно найти достаточно много схем ограничителей бросков тока. Но для конкретной задачи они могут иметь ряд недостатков – необходимость пересчета элементов схемы для нужного тока; для мощных потребителей – подбор силовых элементов, обеспечивающих необходимые параметры для расчетной выделяемой мощности. Кроме того, иногда нужно обеспечить минимальный стартовый ток для подключаемого устройства, из-за чего сложность такой схемы возрастает. Для решения этой задачи есть простое и надежное решение – термисторы.

Читайте так же:
Расшифровка названия выключателей автоматических

Термистор
Рис.1 Термистор

Термистор – это полупроводниковый резистор, сопротивление которого резко изменяется при нагреве. Для наших целей нужны термисторы с отрицательным температурным коэффициентом – NTC термисторы. При протекании тока через NTC термистор он нагревается и его сопротивление падает.

ТКС термистора
Рис.2 ТКС термистора

Нас интересуют следующие параметры термистора:

Сопротивление при 25˚С

Максимальный установившийся ток

Оба параметра есть в документации на конкретные термисторы. По первому параметру мы можем определить минимальный ток, который пройдет через сопротивление нагрузки при подключении ее через термистор. Второй параметр определяется максимальной рассеиваемой мощностью термистора и мощность нагрузки должна быть такой, что бы средний ток через термистор не превысил это значение. Для надежной работы термистора нужно брать значение этого тока меньшее на 20 процентов от параметра, указанного в документации. Казалось бы, что проще – подобрать нужный термистор и собрать устройство. Но нужно учитывать некоторые моменты:

  1. Термистор достаточно долго остывает. Если выключить устройство и сразу включить опять, то термистор будет иметь низкое сопротивление и не выполнит свою защитную функцию.
  2. Нельзя соединять термисторы параллельно для увеличения тока – из-за разброса параметров ток через них будет сильно различаться. Но вполне можно соединять нужное к-во термисторов последовательно.
  3. При работе происходит сильный нагрев термистора. Греются также элементы рядом с ним.
  4. Максимальный установившийся ток через термистор должен ограничиваться его максимальной мощностью. Этот параметр указан в документации. Но если термистор используется для ограничения коротких бросков тока (например, при первоначальном включении блока питания и зарядке конденсатора фильтра), то импульсный ток может быть больше. Тогда выбор термистора ограничен его максимальной импульсной мощностью.

Энергия заряженного конденсатора определяется формулой:

E = (C*Vpeak²)/2

где E – энергия в джоулях, C – емкость конденсатора фильтра, Vpeak – максимальное напряжение, до которого зарядится конденсатор фильтра (для наших сетей можно взять значение 250В*√2 = 353В).

Если в документации указана максимальная импульсная мощность, то исходя из этого параметра можно подобрать термистор. Но, как правило, этот параметр не указан. Тогда максимальную емкость, которую безопасно можно зарядить термистором, можно прикинуть по уже рассчитанным таблицам для термисторов стандартных серий.

Я взял таблицу с параметрами термисторов NTC фирмы Joyin. В таблице указаны:

Rном — номинальное сопротивление термистора при температуре 25°С

Iмакс — максимальный ток через термистор (максимальный установившийся ток)

Смакс — максимальная емкость в тестовой схеме, которую разряжают на термистор без его повреждения (тестовое напряжение 350v)

Как проводится тестовое испытание, можно посмотреть тут на седьмой странице.

Несколько слов о параметре Смакс – в документации показано, что в тестовой схеме конденсатор разряжается через термистор и ограничительный резистор, на котором выделяется дополнительная энергия. Поэтому максимальная безопасная емкость, которую сможет зарядить термистор без такого сопротивления, будет меньше. Я поискал информацию в зарубежных тематических форумах и посмотрел типовые схемы с ограничителями в виде термисторов, на которые приведены данные. Исходя из этой информации, можно взять коэффициент для Смакс в реальной схеме 0.65, на который умножить данные из таблицы.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector