Ele-prof.ru

Электро отопление
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как повторить китайский тренд со; световыми мечами. Три способа снять красивые видео самостоятельно

Как повторить китайский тренд со «световыми мечами». Три способа снять красивые видео самостоятельно

26 ноября 2021 17:37 Виктория МолчановаВиктория Молчанова

В российский сегмент тикотка пришёл китайский тренд съёмки эстетичных видео со «световыми мечами» — длинными светодиодными лампами. Россияне быстро изменили челлендж и начали снимать пародии на эстетичные видео или пытаться повторить красивые ролики с помощью подручных средств. Авторка Medialeaks проверила, работают ли советы российских тиктокеров.

Откуда пошёл тренд со «световыми мечами»

В ноябре 2021 года в китайском сегменте тиктока стали популярны ролики Lightsaber Crossover Challenge (рус. «Челлендж: переход в видео со световыми мечом»). А нём авторы роликов, например regina_0k , снимали видео с бутафорским оружием из «Звёздных войн», которое доставали из-за спины будто из ножен.

Тиктокер xy.nq заменил световые мечи на длинную светодиодную лампу. В первой части видео молодой человек показывает несколько приёмов с катаной при дневном освещении, в конце видео свет гаснет и автор роликов достаёт белую светодиодную лампу, которая в темноте освещает его тело.

В челлендже поучаствовали косплеерши, например тиктокерша elfin16e.

Подобные видео набирали большое количество просмотров и быстро стали вирусными в Китае, а потом попали в русскоязычный сегмент тиктока.

Как россияне участвуют в челлендже

Пользователи рунета вдохновились эстетичными роликами китайских тиктокеров и принялись повторять их видео, но внесли в тренд изменения. Вместо красивых «световых мечей» авторы публикаций используют различные предметы, которые дают свет. Например, тиктокерша your.bulochka в полной темноте открыла дверцу холодильника.

Пользователь тиктока edorensky поиронизировал над внешностью китайских тиктокеров, которые участвовали в тренде, так как девушки и парни в видео чаще всего накачанные и подтянутые. В первой части ролика фуд-блогер сделал себе бутерброд с колбасой, завёл тарелку с ним за голову, а во второй посуда сменилась кольцевой лампой.

Тему еды затронула и авторша видео kristina_kork. Девушка пошутила о том, что в темноте, пока никто не видит, ест шаурму.

Тиктокерша yanina_thor отказалась от идеи использовать что-то светящееся в своём ролике. В первой части видео девушка рассказала о том, что устала, а во второй в темноте достала из-за плеча бутылку вина.

Кроме шуточных пародий на китайский тренд некоторые пользователи рунета повторяли и сам челлендж, используя для этого подручные средства.

Как снять видео со «световыми мечами» дома

Способ первый

Тиктокерша maribuvideo сделала туториал, где рассказала, как сделать «световой меч» своими руками и позже обработать видео так, чтобы оно не уступало роликам китайских тиктокеров.

Первым делом девушка обмотала пластиковую трубу самоклеящейся светодиодной лентой, которую можно купить в любом строительном магазине. Для того чтобы рассеять свет и сделать его не белым, а цветным, авторша обучающего ролика закрепила на конструкции красный полиэтиленовый пакет.

Когда «световой меч» был готов, тиктокерша рассказала, как правильно снять эстетичный ролик.

Снимаем первую часть при обычном освещении. Вторая часть: меняем образ и убираем экспозицию на минус два.

Далее девушка загружает видео в редактор на смартфоне, отметив, что подойдёт любое приложение, и обрезает лишние части ролика, а также добавляет цветокоррекцию, чтобы добиться нужного ей оттенка «мечей». Осталось лишь загрузить получившийся материал в тикток и добавить музыку.

Способ второй

Если тратить лишние деньги на покупку светодиодной ленты и пластиковой трубы не хочется, то можно воспользоваться советом пользовательницы тиктока с ником karpovakristy.

У меня нет ни светодиодной ленты, ни светового меча. Зато у меня есть лампа для рассады.

Способ третий

Некоторые тиктокеры брали в качестве источника света кольцевую лампу. Авторка Medialeaks проверила, работают ли советы по обработке видео и приняла участие в челлендже. Для этого потребовалась кольцевая лампа, несколько испорченных дублей, редактор для замедления видео и эффект Neon в тиктоке.

Пользователи рунета могут превратить в шутку буквально что угодно. Так произошло с китайским челленджем съёмки эстетичных видео, где россияне иронизировали насчёт подтянутой фигуры китайцев и своей любовью к еде.

Ранее Medialeaks проверил, почему не стоит верить загадочным видео, где тиктокеры кладут в рот нагретый на зажигалке лёд и выдыхают дым. Превратиться в дракона мешают законы химии.

Также автор Medialeaks узнала, что такое фиджет борды, и проверила, действительно ли они помогают избавиться от стресса.

Лампа с током как называется

Усилители Music Angel

Ламповый усилитель XD500MKIII: EL34, 2х50 Вт Ламповый усилитель XD800MKIII: KT88, 2х65 Вт Ламповый усилитель XD845MKIII: 845, 2х20 Вт Ламповый усилитель XD850MKIII: 300B, 2х9 Вт Ламповый усилитель XD8502AIII: 300B, 2х9 Вт Предварительный ламповый усилитель XD900MKIII: 12AU7, 12AX7

Ламповый усилитель MINI 6: KT88, 2х60 Вт Ламповый усилитель MINIP1: 6AQ5, 2х10 Вт Ламповый усилитель MINIL3: EL34, 2х35 Вт Ламповый усилитель MINIP14: 6P14, 2х10 Вт

Ламповые усилители LACONIC HA-02,03B/B2/M: 6N6P, 2х1,2 Вт на 300 Ом

Акустическая система Music Angel One: 20 — 100 Вт, 38 Гц — 30 кГц, 86 Дб/Вт/м Акустическая система Music Angel 2.5: 20 — 200 Вт, 20 Гц — 30 кГц, 86 Дб/Вт/м Акустическая система Music Angel TK-10: 10 — 250 Вт, 45 Гц — 22 кГц, 8 Ом, 97 дБ/Вт/м Акустическая система DIVA 5.2: 10 — 150 Вт, 36 Гц — 20 кГц, 90 дБ/Вт/м

КТ 88: Filament Voltage 6.3 V Filament Current 1.6 A Plate Voltage (max) 800 V Plate Current (max) 230 mA Plate Dissipation (max) 40 W 845: D.C. Plate Voltage 1250 D.C. Grid Voltage -98 Peak A.F. Grid Voltage 93 D.C. Plate Current (ma.) 95 Power Output (watts) 15 21 300B: Filament Voltage 5 V Filament Current 1.2 A Plate Voltage (max) 450 V Plate Current (max) 100 mA Plate Dissipation (max) 40 W

Читайте так же:
Как выбрать трансформатор тока для ламп

Как пользоваться характеристиками электронных ламп

Характеристиками электронных ламп называются графики зависимостей токов электродов ламп (обычно тока анода, экранной и управляющей сеток) от приложенного к ним напряжения.

Для того чтобы снять характеристику простейшей электронной лампы—диода, нужно изменять напряжение его анода по отношению к катоду и одновременно измерять анодный ток. Для этого можно собрать установку, схема которой показана на рис. 1 (цепи накала для упрощения не показаны). Характеристика одного диода лампы 6Х6С показана на рис. 2. Пользуясь ею, можно узнать, какой ток потечет через диод, если к нему приложить какое-либо напряжение, или, наоборот, какое напряжение нужно приложить между анодом и катодом, чтобы потек данный ток. Поскольку диод имеет только два электрода, напряжение и ток между которыми зависят друг от друга, то получается всего одна зависимость анодного тока от анодного напряжения.

На рис. 3 показана схема установки для снятия характеристик триода — зависимостей анодного тока от напряжения на аноде и управляющей сетке триода. Измерения производятся следующим образом: снимается зависимость анодного тока от напряжения на аноде при напряжении на управляющей сетке —1 В, —2 В, —3 В и т. д. При этом получается целая серия кривых. На графике около каждой кривой указывается то напряжение на управляющей сетке по отношению к катоду, при котором эта кривая снималась. Такие характеристики называются анодными характеристиками.

Для пентодов и тетродов снимают анодные характеристики при различных напряжениях на экранной и управляющей сетках. Схема установки для снятия анодных характеристик пентодов показана на рис. 4. Для многоэлектродных ламп можно получить зависимость Iа и от напряжения на управляющей сетке Uс при постоянном анодном напряжении Ua, так называемые сеточные характеристики. Сеточная характеристика для одного триода лампы 6Н9С показана на рис. 5а. Тут уже каждая кривая снята при постоянном напряжении на аноде. Так как анодные и сеточные характеристики дают разными способами одни и те же зависимости, то, если сняты анодные характеристики, сеточные можно построить графически и наоборот.

Примеры таких построений показаны на рис. 5а и б. Если мы имеем анодные характеристики и хотим построить сеточную характеристику для какого-либо напряжения на аноде, например 350 В, то для этого нужно провести вертикальную прямую из точки 350 В на оси напряжений графика, на котором изображены анодные характеристики. В точках пересечения этой прямой с анодными характеристиками для Uc =—1, —2, —3 и т. д. вольт (точки 1, 2, 3, 4, 5 на рис. 5б), мы получим значения токов анода при напряжении на аноде Uа = 350 В. То есть точки 1′, 2′, 3′, 4′, 5′ на сеточной характеристике анодного тока триода рис. 5а. Пример построения анодной характеристики для Uс = — 1 В показан на этих же рис. 5, а, б.

Рассмотренные выше характеристики называются статическими, так как любая из них отражает зависимость анодного тока только от одной переменной величины (либо от Uа, либо от U с ). Однако при работе лампы все токи и напряжения изменяются одновременно. Так, например, если один триод лампы 6Н9С работает в усилителе НЧ на сопротивлениях, схема которого показана на рис. 6, то изменение напряжения между управляющей сеткой и катодом приведет к изменению анодного тока, что, в свою очередь, вызовет изменение напряжения между анодом и катодом лампы вследствие изменения падения напряжения на сопротивлении анодной нагрузки Ra. Если, изменяя напряжение между сеткой и катодом лампы этого усилителя, измерять напряжение между анодом и катодом, то мы получим так называемую динамическую сеточную характеристику для данного сопротивления Ra и постоянного напряжения источника питания Eб.

Такая характеристика для Ra = 50 000 ом и Еб = 400 в проходит через точки 1′, 2′, 3′, 4′, 5′ рис. 7а. Оказывается, что динамическая характеристика на графике анодных характеристик рис. 7б является прямой линией, которая пересекает ось напряжения в точке, соответствующей напряжению Еб (точка 5, в данном случае 400 В).

Координаты любой точки этой прямой можно определить из выражения Iа = (ЕбUa ) / Ra так для Ua = 0 В т. е. для оси анодного тока мы получим Iа = Еб / Ra

(т. е. в нашем случае Iа = 400 / 50000 = 8 мА).

Через эти две точки и проведена данная динамическая характеристика. Проведя динамическую характеристику, легко определить, какой ток и какое напряжение на аноде будет иметь лампа при каком-либо напряжении на управляющей сетке. Так, для Uc1 = 2 В мы получаем из рис. 7 б: Iа = 2,7 мА; Ua = 270 В. Пользуясь динамической характеристикой, легко определить коэффициент усиления усилителя на средних частотах К.

Для этого по рис. 7б определяем анодные напряжения для Uс1 = — 1 В и Uс1 = — 3 В, которые равны соответственно 227 и 304 В. При изменении напряжения на управляющей сетке на 2 В анодное напряжение изменилось на 304—227 = 77 В, откуда Ко = 77/2 = 38,5.

Иногда на графиках анодных характеристик изображают еще кривую максимально допустимой мощности, рассеиваемой на аноде (рис. 7, а, б). Динамическая характеристика лампы должна проходить ниже этой кривой, так как в противном случае анод может перегреться. Пользуясь статическими характеристиками, можно определить параметры лампы: крутизну S, показывающую, на сколько миллиампер изменится анодный ток при постоянном напряжении на аноде, при изменении напряжения на управляющей сетке на один вольт; внутреннее сопротивление Ri равное отношению приращения анодного Напряжения к соответствующему приращению анодного тока, и статический коэффициент усиления, показывающий, во сколько раз больше влияет на изменение анодного тока изменение сеточного напряжения по сравнению с изменением напряжения на аноде.

Определим все эти величины, пользуясь анодными и сеточными характеристиками для лампы 6Н9С рис. 8, а, б. Пусть рабочая точка Uс1 = — 2 В; 1а = 2,3 мА;

Читайте так же:
Если сила тока больше значит лампочка будет светить меньше

Uа = 250 В (на рис. 8, а точка 1′, на рис. 8, б точка 1). Решим эту задачу, пользуясь анодными характеристиками. Для этого из рабочей точки (1) проведем вертикальную и горизонтальную линии до пересечения с анодной характеристикой для Uc = — 1 В (точки 2 и 3). Для того чтобы найти значение S, нужно определить анодные токи лампы для точек 2 (Iа = 4,1 мА) и 1 (Iа — 2,3 мА) и разделить их разность на соответствующее приращение сеточного напряжения (в нашем случае равное 1 В), т. е.

Для того чтобы найти значение μ, нужно разделить разность анодных напряжений для точек 3 (Ua = 175 В) и 1(Uа = 250в) на соответствующую разность напряжений на управляющей сетке, в нашем случае 1 В, т. е. μ = (250 В —175 В) / 1В = 75.

Для того чтобы определить Ri нужно через рабочую точку 1 провести касательную к анодной характеристике, затем провести параллельную ей прямую через точку пересечения осей напряжения и тока и, отметив на этой прямой любую точку (9), разделить соответствующее этой точке значение напряжения на ток, т. е. в нашем случае Ri = 300 В / 0,007А = 43000 Ом.

Найдем эти же величины для той же рабочей точки, пользуясь сеточными характеристиками. Крутизна 5 определится как разность токов для точек 1′ и 2′, деленная на изменение напряжения на управляющей сетке, т. е. 1 В

Для определения статического коэффициента усиления μ проведем через рабочую точку 1′ горизонтальную прямую до пересечения с сеточной характеристикой для напряжения на аноде Uа = 200 В (точка 5). Затем нужно разделить разность анодных напряжений для точек 1′ (Uа = 250 В) и 5 (Uа = 200 В) на разность сеточных напряжений для этих же точек 1′ (Uс = — 2 В), 5(Ucl= —1, 33 В), получим μ = 75. Для определения Ri нужно провести через рабочую точку 1′ вертикальную прямую до пересечения со следующей сеточной характеристикой: точка 4 (Ua = 300 В). Внутреннее сопротивление найдем как частное от деления разности анодных напряжений для точек 1′ и 4 на разность токов для этих же точек

На рис. 8, б показаны также динамические характеристики для Ra = 100, 50 и 25 кОм и разных значений Eб=200 и 400 В.

Пользуясь анодными характеристиками, можно решить также следующие задачи:

1. Определить величину сопротивления Rk необходимого, чтобы получить постоянное смещение Ес1 = — 2 В на сетку лампы 6Н9С усилителя на сопротивлениях (рис. 6), если

Для этого проводим на графике анодных характеристик рис. 9 динамическую характеристику через точки: Ua = Еб 250 В и

Точка пересечения этой прямой с анодной характеристикой для Uс1 =2 В дает нам значение Iа= 1,2 мА, откуда

2. Определить Iа, Uа, Ec1 при отсутствии сигнала для лампы 6Н9С, если известно Еб = 400 В, Ra = 100000 Ом, Rk = 4000 Ом.

Эта задача сводится к нахождению на динамической характеристике рабочей точки, в которой произведение анодного тока на Rk было бы равно напряжению смещения для анодной характеристики, проходящей через эту же точку. Эту задачу можно решить путем ряда приближений, выбирая сначала любую точку на динамической характеристике и находя произведение тока в этой точке на Rk. Если при этом полученное значение напряжения смещения будет больше по абсолютной величине, чем напряжение Uс1 анодной характеристики, проходящей через эту точку, то следующая пробная точка должна иметь меньший анодный ток и наоборот.

Проведем динамическую характеристику через точки Ua = Eб= 400в (рис. 9) и Iа = Eб / Ra = 4 мА. Выбираем первую пробную точку 1 на пересечении динамической характеристики с анодной характеристикой для Uс1 = —5 В. Произведение IaRk Дает значение 2 В, т. е. точку 2. Следующую пробную точку выбираем согласно правилу с большим током анода: точка 3 — пересечение динамической характеристики с анодной характеристикой для Uс1 = — 3,5 В (эта кривая на графике не показана).

Произведение RkIa равняется в этом случае 4,4 В, т. е. рабочая точка лежит где-то между точками 1 и 3. Дальнейший подбор дает рабочую точку 5, для которой Ec1 = — 3,8 В; Iа = 0,95 мА; Uа = 310 В.

3. Определить величины Rk и Rc2 усилителя напряжения на пентоде 6Ж8, схема которого показана на рис. 10, если известно:

Проводим динамическую характеристику через точки Ua = Eб= 260 В и Iа = 8,7 мА (рис. 11).

Определяем по динамической характеристике для Ec1 = -2 В

Так как напряжение на экранной сетке должно быть равно 100 В, падение напряжения на сопротивлении Rc2 равно

Из чего состоит лампочка накаливания — схема и устройство

Для создания искусственного освещения часто используют обычную лампу накаливания. Этот элемент знаком всем еще со времен СССР. Стеклянная колба, патрон и спираль — основные видимые части продукта. Как устроена лампа накаливания изнутри, интересно и мастеру-новичку, и профессионалу.

История изобретения лампочки

Изделие проектировалось и дорабатывалось многими учеными в разные периоды. Первая электрическая дуга была зажжена ученым Петровым В.В. в 1802 году. Изобретение состояло из двух угольных стержней, которые подключались к полюсам гальванической батареи. В момент их сближения возникал электрический разряд, и над элементами формировалась светящаяся дуга. Применение такой лампы в быту было невозможным по ряду причин – неудобство конструкции, быстрое перегорание угольных стержней. Зато мировые ученые начали понимать, из чего сделать лампу.

Спустя 70 лет в 1872 году Лодыгин А.Н. получил патент на лампу накаливания. В качестве спирали в ней был использован стержень ретортного угля, который находился под стеклянным колпаком.

Уже в 1880 году 10 мая лампочкой Лодыгина было обустроено уличное освещение в Санкт-Петербурге на Литейном мосту. Срок службы источника света составлял всего 2 месяца (пока не перегорал угольный стержень).

Читайте так же:
Как расключить выключатель с лампой

В 1910 году было принято решение скручивать вольфрамовую нить в спираль для увеличения ресурса её службы. Таким образом, изделие теперь работает вместо первоначальных 50-100 часов целых 1000 ч.

Принцип теплового получения излучения используют и при производстве галогеновых ламп дневного света.

Из чего состоит лампа

Строение и схема лампы накаливания выглядят так:

  • стеклянная колба грушевидной или округлой формы;
  • тело накала (вольфрамовая или угольная нить), расположенное в ней на двух держателях-крючках;
  • два электрода;
  • предохранитель;
  • ножка;
  • цоколь (корпус) с изолятором;
  • его контакт (донышко).

Окисление вольфрамовой нити (спирали, тела накала) исключается за счет её помещения в вакуум или газообразную среду. Ими наполняют стеклянную колбу.

Электротехнические параметры

Все лампочки производятся для разных напряжений. Поскольку тугоплавкий металл вольфрам имеет малое удельное сопротивление, для устройства светового элемента нужен длинный провод. Таким образом, нить накаливания в электрической лампочке часто достигает 50 микрометров. При включении света через тело накала проходит ток, превышающий рабочий в 10-14 раз. Чем больше прогревается нить, тем сильнее увеличивается сопротивление нити и снижается сила тока.

Принцип работы электрической лампы накаливания

Рассмотрев, из чего состоит лампочка, важно понять и принцип её работы:

  • При включении света через донышко цоколя к телу накала проходит ток.
  • Вольфрамовая нить сильно разогревается после замыкания электрической цепи, что приводит к её свечению.
  • На этот момент температура нити достигает 570 градусов.
  • Таким образом спектр свечения лампочек сдвинут в сторону теплых температур.

Для справки: чем ниже градус вольфрамовой/угольной нити, тем ниже будет доля энергии, которая подходит к телу накала и провоцирует его видимое излучение. Ретро-лампы тем и отличаются, что медленнее и слабее прогревают спираль.

Разновидности световых элементов

Классифицируют все изделия по разным параметрам. По типу наполнения колбы различают такие лампы:

  • самые простые вакуумные (при их изготовлении из колбы отсасывается весь воздух);
  • наполненные газом аргоном;
  • ксенон-галогенные;
  • наполненные криптоном.

По типу предназначения лампочки делят на такие виды:

    Декоративные. Работают по привычному принципу. Колба выполнена в виде свечи или шара.

По количеству нитей накаливания все элементы бывают:

  • Двухнитевые. Имеют одно тело накала для дальнего (сильного) света и одно – для ближнего (слабого) освещения. Используются в авто, авиации, ж/д светофорах, в звездах Московского Кремля.
  • Однонитевые. Привычные лампочки с вольфрамовым телом накала.

Тело накала малоинерционных изделий имеет крайне тонкую спираль. Ранее они применялись для систем оптической записи звука. Существуют также нагревательные лампы, которые используют для устройства сушильных камер, электроплит, оргтехники и др.

Преимущества и недостатки

Лампы накаливания имеют ряд своих достоинств:

  • приемлемую стоимость;
  • компактные габариты;
  • мгновенную реакцию на включение/выключение;
  • отсутствие мерцания, неблагоприятно воздействующего на глаза;
  • инертность к скачкам напряжения;
  • мягкая гамма свечения, способствующая расслаблению, созданию атмосферы уюта;
  • хороший индекс цветопередачи, равный Ra 90;
  • работа в любых условиях (в том числе при высокой влажности);
  • постоянная доступность для потребителя;
  • экологичность;
  • отсутствие шума при работе;
  • инертность к ионизирующей радиации.

К недостаткам ламп накаливания относят такие моменты:

  • хрупкость, чувствительность к механическим повреждениям;
  • сравнительно малый срок эксплуатации;
  • низкий КПД, не превышающий 5-7% (отношение расходуемой мощности к видимому излучению);
  • пожарная опасность при прямом контакте лампы с горючими веществами (текстиль, солома и др.);
  • вероятность взрыва при термическом ударе или разрыве спирали под напряжением.

Несмотря на все перечисленные недостатки, привычные лампочки уверенно сохраняют за собой занятые позиции. Более 70% населения СНГ все еще пользуются ими.

КПД и долговечность

Разбирая, как устроена лампа накаливания, важно понять коэффициент ее полезного действия. При световой температуре 3400 Кельвинов КПД элемента составляет 15%. Имеется в виду отношение потребляемой мощности к видимому человеческим глазом световому излучению. При температуре 2700 К (средняя нормальная для обычной бытовой лампы) коэффициент полезного действия равен всего 5%.

Чем выше температура накала, тем большим будет КПД. Но при этом срок службы изделия снижается. К примеру, если повысить напряжение на 20%, яркость освещения станет сильнее — повысится КПД лампочки, однако срок эксплуатации сократится на 90-95%. Соответственно, снижение напряжения приводит к уменьшению коэффициента полезного действия изделия и увеличению срока его эксплуатации.

Как увеличить срок службы лампы накаливания

В среднем обычная бытовая лампочка накаливания служит 700-1000 часов. Но на деле элемент перегорает гораздо быстрее. Чтобы продлить срок службы лампочки, нужно предотвратить провоцирующие перегорание спирали факторы.

  • Учитывать диапазон напряжений. Его указывают на колбе изделия. Как правило, он равен 125-135 Вт, 220-230 Вт, 2,3-2,4 кВт. При превышенном напряжении в доме изделие будет перегорать скорее. К примеру, в квартире максимальное напряжение 220 В, а лампа куплена с диапазоном 125-135 В. Здесь нить накала перегорит однозначно быстрее, поскольку увеличивается КПД изделия.
  • Устранить неисправность патрона. Если лампы перегорают часто, стоит осмотреть его, перепроверить контакты. При необходимости патрон меняют.
  • Исключить вибрации. Они приводят к быстрому перегоранию вольфрамовой нити. Поэтому перенос мобильных светильников лучше выполнять с выключенной лампочкой.

Для продления срока службы лампы накаливания можно снизить напряжение в сети всего на 7-8%. В этом случае изделие проработает дольше в 3-3,5 раза при экономном расходе электроэнергии.

Как и когда появилась электрическая лампочка?

Кто изобрел лампочку? Ответ на этот вопрос не совсем точный. Электрическая лампочка была изобретена несколькими людьми, так как разные люди высказали идеи, описывали гипотезы, опубликовали подсчеты, делали чертежи либо внедряли задумки в практику.

Светильники до появления электрического аналога

В мире возникновения освещение, как только стали применять огонь. Затем она начала эволюционировать, когда стали делать появилась энергетика.

Первые лампочки освещали с помощью таких средств, как:

  • любое растительное масло;
  • нефть;
  • воск;
  • животный жир;
  • природный газ и так далее.
Читайте так же:
Как соединить два выключатель один лампу

Самые первые изобретения ламп использовали для освещения жир. В емкость с жиром клали тканевой фитиль. Жир позволял длительное время огню освещать. Выходило что-то напоминающее свечу в емкости. История лампочки прогрессировала, когда стали добывать нефть, в это время появлялись керосиновая лампа. Она за короткий промежуток времени стала так востребована. Изобретение электрической лампочки приходятся на время, когда электричество начала быстро распространяться вначале в городских просторах, а затем и в дальних уголках.

Этапы открытия

В основу изобретения лампочек положили способ свечения проводников, когда через него проходил электрический ток. Его знали еще задолго до того, как создали лампочку. Но главная проблема эффективного, продолжительного и доступного освещения от электрической сети был поиск материала, который бы использовался для изготовления спирали накаливания. Тогда когда электричество уже являлось реальностью, а современные лампы накаливания еще не были изобретены, учеными практиковались лишь несколько видов материалов, среди которых был уголь, платин и вольфрам. Последние два материала считались редкими и дорогими. Уголь относился к более доступному материалу.

Начиная с XIX столетия имели место события, способствовавшие созданию первой электрической лампочки. В 1820 году французский ученый Деларю создал лампочку с платиновой проволокой. Проволока согревалась и светилась, однако это был всего лишь опытный экземпляр. Но спустя 18 лет исследователь из Бельгии Жобар показал угольную лампу накаливания. В 1854 году немецкий ученый Генрих Гебель как источник для освещения использовал бамбук.

Вид первой лампы накаливания

Вид первой лампы накаливания

Кто автор электрической лампочки?

Интересуясь ответом на вопрос – кто изобрел лампу, необходимо учесть, что тут имело место целая череда последовательных манипуляций, когда постоянно подхватывались идеи предшественников, которые впоследствии развивались. Яблочков является первым русским изобретателем, кто изобрел первую лампочку, а также он придумал электрическую свечу, благодаря которой впоследствии начали освещать городские улицы и скверы. Они могли освещать в течение 1,5 часов.

Впоследствии были изобретены светильники, у которых была автоматическая замена свечей. Яблочков создал не очень-то удобные свечи. Хотя они отлично справлялись со своей функцией.

История изобретения связано с именем такого популярного инженера из России, как Лодыгин Александр Николаевич. В 1872 году он воплотить в реальность мечту всех о бесперебойном источнике света. История создания лампы накаливания на этом этапе начала стремительно получать практическое использование. Она горела примерно 30 минут. Их впервые установили на улицах Северной столицы в 1873 году. В том же году изобретатель лампочки получил патент. Можно сделать вывод. Первая лампа накаливания появилась благодаря изобретениям этого ученого.

Начиная с 1890 года Лодыгин стал экспериментировать с использованием в нитях накала разнообразных тугоплавких металлов. В конечном итоге он смог применять впервые тут вольфрам. Кроме того, по его предложению стали впервые откачивать воздух из ламп и туда заполнять газ.

В 1878 Джозеф Сван помог появиться современной модификации электрической лампочки. Она состояла из колбы из стекла с угольной нитью накаливания. О создателе ламп Хайрем Максим известно немного. Создавали пулемет с наименованием «Максим». Кроме того, он является создателем оригинальной модели на таких материалах, как уголь и бензин.

Томас Эдисон и Ильич

Если принять во внимание хронологии порядок протекающих событий, то электрическую лампу создал Лодыгин. А вот Яблочков являлся основоположником серии идей, которые стали причиной появления популярного сегодня источника освещения. Именно эти русские изобретатели и последующие разработки исследователей из Великобритании и Америки первую электрическую лампочку смогли так массово использовать и он оказался обыкновенным прибором, который производил свет. Но при развитии задумок имеется тот, кто ее породил, и тот, кому достался патент. А вот изобретение дуговой лампы не так известно.

Томас Эдисон

Томас Эдисон

В 1879 году впервые продемонстрировали лампочку Эдисона с платиновой нитью. Через год ему дали еще один патент на модель с угольной нитью, работавшая в течении 40 часов. К тому же он внес определенный вклад в изготовлении лампочки накаливания, создав цоколь, патроне и выключатель.

То есть Томас Эдисон получил патент на электрическую лампу накалывания как собственного изобретения спустя год, как использовали модель Максима и практически позже на 6 лет всеобщего показа лампы Лодыгина. У патентной работы Т. Эдисона были собственные результаты: при объединении с Джозефом Сваном, он основал фирму по изготовлению самой первой модели электрических лам накаливая. Т. Эдисон вместе с Х. Максимом, когда конкурировали друг против друга, были в бюрократических разбирательствах между собой.

Т. Эдисон был более доступный. Х. Максим в данной борьбе не удостоился ни единого патента, а также у него были огромные финансовые потери, по этой причине он оставил страну и отправился в Европу. С лампочкой Эдисона все понятно.

А вот кто основатель лампочки Ильича? Для нынешнего поколения ответ неоднозначный. Подобное наименование знали лишь на территории Советского Союза, этот термин оказался в лексиконе россиян. Лампочки Ильича является наименованием не просто осветительного прибора, а целого ряда явлений. В 1921 году, на территории России царил глубокий экономический кризис, разразившийся тут в результате известной всем гражданской войны. И в это время Государственная комиссия по электрификации РФ приняла план ГОЭЛРО. Он был планом по развитию хозяйства, который бал основан на создании энергетической базы. В это время стали электрифицировать страну огромными масштабами. В скором времени в поселках, в которых использовались главным образом лучные либо керосиновые лампочки стали появляться электрические лампочки.

Ленин

Ленин

Идею этого плана озвучил Ленин. По этой причине лампы для накала стали именовать в его честь. Такие модели стали накаливаться очень быстро. Лампочки Эдисона известно сегодня по той причине, что он смог вовремя запатентовать свое изобретение. На территории нашей страны лампочки с накаливаемыми стержнями начали ассоциировать с именем Ленина, потому что он первый снабдил Россию экономичной электроэнергией.

Читайте так же:
Лампы дневного света с розетками

Цоколи ламп — типы, размеры, маркировка

Цоколь — это часть лампы освещения предназначенная для ее крепления в патроне и подведения к лампе электрического тока.

Наука и техника не стоит на месте, если раньше, при необходимости заменить лампочку, для ее покупки в магазине достаточно было знать только мощность необходимой лампы, то теперь, в связи огромным количеством различных видов ламп освещения у вас обязательно спросят, с каким цоколем вам нужна лампа и этот вопрос многих может поставить в тупик.

В данной статье мы рассмотрим все основные типы цоколей ламп освещения.

Маркировка цоколей

Каждый тип цоколя имеет свою буквенно-цифровую маркировку которая расшифровывается следующим образом (для примера возьмем цоколь R7s):

маркировка цоколей ламп

Как видно на схеме выше, первая заглавная буква обозначает тип цоколя, следующая за ней цифра — это его диаметр, либо расстояние между контактными штырьками указанные в миллиметрах, после цифровой маркировки в некоторых случаях может идти одна строчная буква указывающая на количество контактов цоколя.

ПРИМЕЧАНИЕ: Иногда в маркировке после первой заглавной буквы может идти вторая заглавная буква обозначающая тип лампы:

  • A – автомобильная лампа;
  • U – энергосберегающая лампа;
  • V – цоколь с коническим концом и т.д.

Рассмотрим основные типы цоколей подробнее.

Резьбовые цоколи типа Е

резьбовые цоколи типа E

Резьбовые цоколи являются самым распространенным видом цоколей, они встречаются почти во всех типах ламп, от ламп накаливания до светодиодных ламп.

Наиболее распространенным типом резьбового цоколя является цоколь Е27, который применяется в большинстве бытовых ламп, так же в быту часто встречается и цоколь Е14, он может применяться как в люстрах, так и в потолочных светильниках. В свою очередь цоколь Е40 применяется в мощных лампах применяемых, как правило, для уличного освещения.

патроны под лампы с резьбовым цоколем E

Штырьковые цоколи типа G

В цоколях типа G, в отличие от резьбовых, соединение с патроном осуществляется посредством контактных штырьков. Благодаря своей простоте и универсальности такие цоколи широко распространены и применяются в галогенных, люминесцентных и светодиодных лампах.

Штырьковые цоколи типа G

Остановимся на наиболее распространенных цоколях типа G более подробно:

  • Цоколь G4

лампы с цоколем g4 и патрон

Лампочки с цоколем G4 могут быть галогенными либо светодиодными, они имеют небольшие размеры и мощность поэтому, как правило, применяются для декоративного освещения, мебели, витрин и т.п. Зачастую такие лампы рассчитаны на напряжение 12 Вольт.

  • Цоколь G5,3

лампы с цоколем g5,3 и патрон

Лампочки с цоколем G5.3 так же могут быть как галогенными так и светодиодными, применяются для декоративной подсветки и для установки в потолочные светильники (споты).

  • Цоколь GU10

лампы с цоколем gu10 и патрон

Лампы с цоколем GU10 аналогичны предыдущим, однако на они имеют утолщения на концах штыревых контактов для поворотного соединения с патроном, что обеспечивает их более надежное соединение.

  • Цоколь G13

лампы с цоколем g13 и патрон

Цоколи G13 применяются в люминесцентных и светодиодных лампах с трубчатой формой колбы диаметром 26 мм.

  • Цоколь G23

лампы с цоколем g23 и патрон

Лампы с цоколем G23 могут быть светодиодными либо люминесцентными и применяются, как правило, в светильниках потолочной (настенной) установки, а так же в настольных лампах.

Цоколи с утопленными контактами типа R

Наибольшее распространение среди цоколей типа R получили лампы с цоколем R7s, такие лампы преимущественно применяются в прожекторах (светильниках высокой После марки цоколя «R7s» указываются цифры обозначающие длину самой ламы.

лампы с цоколем r7s и патрон

Так же цоколи с утопленными контактами могут применяться в автомобильных лампах.

Штифтовые цоколи типа B

штифтовые цоколи типа B и патрон

Особенностью цоколей данного типа является наличие боковых штифтов предназначенных для поворотной фиксации лампы в патроне при отсутствии резьбы. Такое соединение позволяет обеспечить установку лампы в патроне в определенном положении, в связи с чем применяется в осветительных устройствах в которых фокусировка света необходима в строго заданном направлении, например в двухспиральных лампах ближнего/дальнего света для автомобильных фар.

Софитные цоколи типа S

софитные цоколи типа S

Свое начало цоколи типа S берут из сценического оборудования, отсюда же появилось и их название — софитные цоколи. В настоящее время такие виды цоколей используются в светодиодных лампах, которые, как правило, применяются для декоративной подсветки, мебели, зеркал, а так же освещения салонов автомобилей и подсветки их номерных знаков.

Фокусирующие цоколи типа P

Фокусирующий цоколь — это цоколь, позволяющий установить лампу в определенном положении по отношению к его посадочным местам, при этом направление фокусировки света задается встроенной в цоколь сборной линзой.

фокусирующие цоколи типа P

Лампы с данным типом цоколя имеют весьма широкое распространение, от фонариков до кинопроекторов.

Телефонные цоколи типа T

телефонные цоколи типа T

Лампы с телефонным цоколем обычно применяются в пультах управления и щитах автоматики, а так же могут применятся в качестве ламп подсветки, например для подсветки панели приборов автомобиля.

Цифра в маркировке указывает на диаметр лампы в дюймах, например:

T5 (диаметр 5/8 дюйма=1.59 см), T10 (диаметр 10/8 дюйма=3.17 см).

Кабельные цоколи типа K

кабельные цоколи типа K

Лампы с кабельным типом цоколя применяются преимущественно в специализированных электроустановках, например в оранжереях (теплицах), установках имитации солнечного света, в системах заливающего света и т.д.

Безцокольные лампы типа W

безцокольные лампы типа W

Как и следует из названия безцокольные лампы не имеют цоколя, в качестве него выступает основание самой лампы с выведенными на него контактами. Цифры в маркировке таких цоколей обозначают толщину основания лампы с одним токовым вводом.

Такие лампы применяются в новогодних гирляндах, а так же в автомобильных указателях поворота.

Была ли Вам полезна данная статья? Или может быть у Вас остались вопросы? Пишите в комментариях!

Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector