Ele-prof.ru

Электро отопление
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Ремонт привода ПП-67 масляных выключателей

Ремонт привода ПП-67 масляных выключателей

Привод ПП-67 (рис. 1, 2) — пружинный, косвенного действия, применяется с выключателями ВМГ-133 и ВМГ-10. Основные узлы привода смонтированы на металлическом сварном корпусе на наружной стенке:

автоматическое двигательное заводящее устройство, состоящее из электродвигателя, червячного одноступенчатого редуктора, системы зубчатых колес, системы рычагов, связи редуктора с включающими пружинами, контакта в переключателе ;

силовой орган привода, состоящий из трех включающих пружин, узла предварительного натяжения включающих пружин с регулировочным болтом;

сигнально-командные блок-контакты (типа КСА): положения вала, привода, состояния включающих пружин, встроенных в переключатель, и аварийные.

При технических осмотрах привод не разбирают. В случае необходимости капитального ремонта и регулировки привод разбирают с соблюдением следующих требований: включающие пружины должны быть не заведены и до минимума ослаблено предварительное натяжение, выключатель отключен, оперативное напряжение с привода снято.

Не нарушая регулировки, проверяют целость всех деталей, подтягивают ослабнувшие крепления. Особое внимание обращают на поверхность защелок 1 и 5 (рис. 3), несущих ударную нагрузку с рычагами. Трещины и сколы недопустимы. При сильном износе эти детали заменяют. Механизм привода очищают, смазывают и регулируют.

Проверяют качество зацепления защелки 1 с рычагом 6 вала, которое должно быть надежным. Величина зацепления, регулируемая винтом 8, упирающимся в планку 7 рычага 9, должна составлять 4-5 мм. В другом крайнем положении рычаг вала защелкивается удерживающей защелкой 5. Между защелками не должно быть трения, пружины возврата защелок не должны быть слабыми.

Регулируют пружинный буфер (рис. 4), назначение которого смягчать удар заводящего рычага 9 (см. рис. 3) при включении выключателя. Высоту буфера регулируют прокладками или спиливанием торца штока буфера. Величина сжатия буфера должна быть 0,5-1 мм.

Включение выключателя зависит также от состояния пружин 9 (см. рис. 1). Регулировку их производят регулировочным болтом 10. Отключающий механизм (рис. 5) регулируют винтом на релейной планке 5, так чтобы величина зацепления планки 3 ударника расцепления с роликом 4 была порядка 1 мм.

Регулировку подъема ударника (рис. 6) осуществляют винтом стойки 2. Расстояние между планкой 3 и роликом стойки 4 должно быть 2 — 4 мм. При максимальном подъеме ударника последний не должен ударять по корпусу привода. Возможные неисправности привода приведены в таблице.

Рис. 1. Привод ПП-67: 1, 5, 14, 17 и 18 — рычаги, 2 — электродвигатель, 3 — редуктор, 4 — рукоятка, 6 — зубчатая передача, 7 — упор, 8 — планка, 9 — включающие пружины, 10 — регулировочный болт, 11 — траверса, 12 — груз, 13 — зуб траверсы, 15 — отражатель, 16 -корпус, 19 — конечный выключатель

Рис. 2. Кинематическая схема привода ПП-67: 1, 3 и 26 — электромагниты, 2, 4, 10, 11 и 24 — рычага, 5 и 6 — ролики, 7 и 21 — защелки, 8 и 9 — кнопки отключения и включения, 12, 14 и 25 — оси, 13 — запорно-пусковой механизм, 15 и 28 — блок-контакты, 16 и 18 — стойки, 17 — планка, 19 — вал привода, 20 — ударник расцепления, 22 — буфер, 23 — опора релейной оси, 27 — устройство АПВ

Рис. 3. Регулировка включающего и удерживающего механизмов привода ПП-67: 1 и 5 — защелки, 2 и 7 — планки, 3 — стойка, 4 — ударник расцепления, б и 9 — рычаги, 8 — регулировочный винт

Рис. 4. Регулировка пружинного буфера: 1 — регулировочные прокладки, 2 — буфер

Рис. 5. Регулировка отключающего механизма: 7 — корпус привода, 2 — ось кронштейна, 3 и 5 — планки, 4 — ролик

Рис. 6. Регулировка подъема ударника расцепления: 1 — корпус привода, 2 и 4 — стойки, 3 — планка, 5 — ударник расцепления

Таблица. Возможные неисправности привода ПП-67 и способы их устранения

Привод не включает выключатель

Недостаточно зацепление заводящей защелки с рычагом вала

Недостаточно зацепление планки ударника расцепления с роликом удерживающей стойки

Слишком высоко поднимается ударник расцепления, в результате при падении он срывается с удерживающего ролика

Недостаточно натяжение включающих пружин

Отрегулировать зацепление в пределах 4 — 5 мм

Отрегулировать с помощью винта на релейной планке зацепление. Оптимальная величина 1 мм

Отрегулировать высоту подъема ударника, довести расстояние между планкой ударника и роликом удерживающей стойки до 2 — 4 мм

Увеличить их натяжение

Привод не отключает выключатель от действия защиты

Слабо ударяет по релейной планке боек электромагнита из-за недостаточного расстояния между бойком и планкой

Отрегулировать расстояние между бойком электромагнита и планкой релейной оси

Включающие пружины при заводке срываются — не удерживаются в заведенном состоянии

Недостаточно зацепление заводящего рычага за ролик запорно-пускового механизма

Подробно об элегазовых выключателях

За счет чего работает элегазовый выключатель большого напряжения? За счет изолированности фаз между собой посредством элегаза. Принцип работы механизма следующий: при поступлении сигнала об отключении электрического оборудования, контакты каждой камеры размыкаются. Встроенные контакты создают электрическую дугу, которая размещается в газовой среде.

Эта среда разделяет газ на отдельные частицы и компоненты, а из-за высокого давления в резервуаре, сама среда снижается. Возможное применение дополнительных компрессоров, если система работает на низком давлении. Тогда компрессоры усиливают давление и образовывают газовое дутье. Также используется шунтирование, применение которого необходимо для выравнивания тока.

Обозначение на схеме ниже указывает расположения каждого элемента в механизме выключателя:

Что касается моделей бакового вида, так в них контроль осуществляется с помощью приводов и трансформаторов. Для чего нужен привод? Его механизм является регулятором и его назначение заключается в том, чтобы включать или выключать электроэнергию и, если необходимо, удерживать дугу на установленном уровне.

Приводы делятся на пружинные и пружинно-гидравлические. Пружинные обладают большой степенью надежности и имеют простой принцип работы: вся работа делается благодаря механическим деталям. Пружина способна под действием специального рычага сжимать и разжиматься, а также фиксироваться на установленном уровне.

Пружинно-гидравлические приводы выключателей дополнительно имеют в конструкции гидравлическую систему управления. Такой привод считается более эффективным и надежным, ведь пружинное устройство может само изменить уровень фиксатора.

Читайте так же:
Выключатели вв тел характеристики

Что из себя представляет

устройство

В общем кулачковый выключатель представляет собой электрический прибор, который допускает использование при любых типах тока. Основная функция его состоит в переключении цепей управления электрическими устройствами.

Что касается вариативности в значениях допустимого напряжения, то оно достаточно широко.

Так, прибор может работать как при сравнительно низких значениях в 50 Вольт, так и при значительных нагрузках в 500 Вольт в случае использования сети переменного тока или 220 Вольт для постоянного типа электричества.

устройство

Важным условием долгой службы и выносливости выключателя является качество его конструктивных материалов.

Слой изоляции и сами проводники сделаны из высококачественного сырья. Все этапы производства выполнены по последнему слову техники. Это обеспечивает малогабаритность прибора.

Также благодаря подобранному сочетанию материалов повышается невосприимчивость к возможным перегрузкам и обеспечивается высокий уровень коммутационных способностей.

С целью предотвращения неполадок, связанных с короткими замыканиями, используется предохранительный элемент.

Электромагнитные приводы

Двигатель электромагнитного привода (рис.3,а) состоит из следующих частей: магнитопровода 1, сердечника 2, неподвижного «стопа» 3, катушки 4. Последняя имеет две секции, которые расположены внутри магнитопровода. Они включаются параллельно или последовательно в зависимости от номинального напряжения сети постоянного тока (110 или 220 В). В торец сердечника 2 ввинчен шток 5, который в процессе включения упирается в ролик ведущего рычага передаточного механизма и поворачивает его по часовой стрелке.

Двигатель электромагнитного привода (а) и статические характеристики электромагнита постоянного тока

Рис.3. Двигатель электромагнитного привода (а) и
статические характеристики электромагнита постоянного тока (б)

Тяговая сила F электромагнита зависит от тока и положения сердечника (рис.3,б). Цифры у кривых указывают значение тока в долях номинального Iном= Uном/R, где R — сопротивление обмотки.

Как видно из рисунка, тяговая сила увеличивается по мере уменьшения расстояния h и достигает максимального значения при подходе к положению «включено». Такая характеристика соответствует статической характеристике выключателя.

Процесс включения электромагнитного привода

Рис.4. Процесс включения электромагнитного привода:
а — изменение тока;
б — ход подвижной системы выключателя

В процессе включения ток и магнитный поток электромагнита непрерывно изменяются. Сначала при замыкании цепи ток увеличивается приблизительно экспоненциально, пока не достигнет значения, достаточного для трогания нагруженного сердечника (рис.4,а). Время, необходимое для такого нарастания тока, относительно велико (0,2с). Когда ток достигнет необходимого значения, начинается движение сердечника. Скорость его быстро увеличивается, а скорость нарастания тока уменьшается. При включении выключателя на ненагруженную цепь ток в цепи не успевает достигнуть установившегося значения. Если же включение происходит на КЗ, то возникают электродинамические силы, препятствующие движению сердечника и завершению операции включения. Скорость сердечника резко уменьшается, что вызывает увеличение тока в электромагните и увеличение тяговой силы. Сердечник вновь увеличивает скорость и доводит подвижную систему выключателя до положения «включено» (рис.4,б). Если мощность электромагнита недостаточна, происходит сильное торможение сердечника и опасность оплавления контактов, поскольку давление в них недостаточно.

Подробно об элегазовых выключателях

За счет чего работает элегазовый выключатель большого напряжения? За счет изолированности фаз между собой посредством элегаза. Принцип работы механизма следующий: при поступлении сигнала об отключении электрического оборудования, контакты каждой камеры размыкаются. Встроенные контакты создают электрическую дугу, которая размещается в газовой среде.

Эта среда разделяет газ на отдельные частицы и компоненты, а из-за высокого давления в резервуаре, сама среда снижается. Возможное применение дополнительных компрессоров, если система работает на низком давлении. Тогда компрессоры усиливают давление и образовывают газовое дутье. Также используется шунтирование, применение которого необходимо для выравнивания тока.

Обозначение на схеме ниже указывает расположения каждого элемента в механизме выключателя:

Что касается моделей бакового вида, так в них контроль осуществляется с помощью приводов и трансформаторов. Для чего нужен привод? Его механизм является регулятором и его назначение заключается в том, чтобы включать или выключать электроэнергию и, если необходимо, удерживать дугу на установленном уровне.

Приводы делятся на пружинные и пружинно-гидравлические. Пружинные обладают большой степенью надежности и имеют простой принцип работы: вся работа делается благодаря механическим деталям. Пружина способна под действием специального рычага сжимать и разжиматься, а также фиксироваться на установленном уровне.

Пружинно-гидравлические приводы выключателей дополнительно имеют в конструкции гидравлическую систему управления. Такой привод считается более эффективным и надежным, ведь пружинное устройство может само изменить уровень фиксатора.

Принцип работы гидромуфты

Схематично гидромуфта состоит из нескольких основных элементов. Первый из которых – это насосное колесо (обозначено синим на схеме). Такое колесо имеет изогнутые лопасти и заполнено маслом.

Принцип работы гидромуфты

Включение гидромуфты в работу начинается в тот момент, когда насосное колесо начинает вращаться, то масло выталкивается наружу центробежной силой. Чем быстрее вращается колесо, тем больше центробежная сила.

Напротив насосного колеса расположено турбинное колесо (на схеме обозначено красным). Турбинное колесо представляет собой зеркальную копию насосного колеса, повернутую на 180 градусов.

Когда насосное колесо вращается, то поток масла направляется на лопасти турбинное колеса и заставляет его вращаться, но из-за потерь турбинное колесо вращается медленнее.

Степень изменения частоты вращения называется скольжением гидромуфты:

S = 100% *(n1-n2)/n1 = (1-i) * 100%

где n1 – частота вращения вала гидромуфты (приводного двигателя);
n2 – частота вращения вторичного вала гидромуфты (приводного двигателя);
i – передаточное отношение гидромуфты;
s – скольжение, %.

Величины s и i характеризуют глубину регулирования и относятся к режимным характеристикам гидромуфты.

Рабочей жидкостью гидромуфты является масло турбинное марки Т22. Применение масел, склонных к шламообразованию и окислению, не допускается. В масло рекомендуется добавлять присадки против пенообразования и окисления.

При номинальной частоте вращения насоса 2900 оборотов в минуту гидромуфта устанавливается между двигателем и насосом.

В высокооборотных насосных агрегатах (частота вращения более 3000 оборотов в минуту) гидромуфта устанавливается между электродвигателем и передачей, повышающей частоту вращения (мультипликатором).

Устройство гидромуфты

Устройство гидромуфты

Гидромуфта в автомобиле представляет собой самый простой элемент гидравлической трансмиссии. В современном варианте гидромуфта дополнена ещё одним элементов – статором и такой механизм называется гидротрансформатор. Он состоит из нескольких элементов:
Насосного колеса;
Турбинного колеса;
Статора;
Корпуса (картера).

Читайте так же:
Дистанционный выключатель масс автомобиля

Насосное колесо закреплено на валу двигателя и вращается внутри герметичного картера гидромуфты. Турбинное колесо расположено на противоположной стороне и закреплено на ведомом валу.

Внутри корпуса между этими двумя колеса все пространство заполнено маслом.

Для преобразования крутящего момента между турбинным и насосным колесами расположен статор. Жидкость возвращается из турбинного колеса в насосное проходя через статор. Это приводит к усилению крутящего момента.

Конструкция насосной гидромуфты

Конструктивная схема гидромуфты насосов разных типов имеет много общих решений.

В состав гидромуфты входит: собственно гидромуфта, рычажно-кулачковая передача и исполнительный механизм.

схема гидромуфты

Гидромуфта типа МГ2 – двухполосная с устройством для регулирования.

Базовая деталь гидромуфты – литой, чугунный корпус (картер) 1 с крышкой 3. В расточках корпуса устанавливается корпус черпательного устройства и подшипник гидромуфты.

К корпусу подсоединяются золотник, маслопроводы, термометры сопротивления. В корпусе установлен перфорированный экран для изоляции вращающегося ротора от брызг и уменьшения вентиляционных потерь. В корпусе отлиты четыре опорные лапы для крепления к фундаментной плите.

С помощью шпилек крышка крепиться к корпусу. По плоскости разъема разъема предусмотрена паронитовая прокладка. В крышке выполнен люк со съемной крышкой, через который производится ремонт замена плавких предохранителей ротора без разборки корпуса гидромуфты 2.

Вал электродвигателя посредством зубчатой муфты соединяется с насосным валом гидромуфты, а вал насоса или редуктора с турбинным валом 9 гидромуфты. Насосный полуротор 5 и турбинное колесо 6 гидромуфты изготавливаются из стальных поковок, с приваренными плоскими радиальными лопастями. Насосный ротор на подшипниках скольжения с осевым упором цапфы 8 устанавливается в корпус.

Турбинный ротор со своими опорами имеет подшипники качения – левый роликовый, а правый — двойной радиально упорный, для восприятия осевых усилий, действующих на ротор при пусках и переменных режимах работы агрегата.

Подшипник качения гидромуфты смазывается жидким маслом, поступающим от подшипников скольжения по специальным сверлениям.

Насосный ротор состоит из двух полуроторов: левого и правого. Левый полуротор 5 крепится болтами с пружинными шайбами к фланцу насосного вала, правый 7 – к цапфе 8. Между собой полуроторы соединены цилиндрическим корпусом ротора 4. К корпусу ротора крепится крышка 10 камеры черпательного устройства.

Турбинный ротор состоит из симметричного колеса, насаженного на вал, и деталей крепления. В ступице турбинного колеса выполнены разгрузочный отверстия для выравнивания давления в обеих рабочих полостях гидромуфты.

Двухполосный круг циркуляции гидромуфты через золотники и корпус подшипника заполняется маслом от маслосистемы. Регулирование частоты вращения турбинного ротора гидромуфты осуществляется изменением значения заполнения круга циркуляции, который через отверстия соединяется с дополнительным объемом, где формируется масляное кольцо.

Схема системы регулирования гидромуфты.

Схема системы регулирования гидромуфты

Работы и регулирование гидромуфты производится путем воздействия вала исполнительного механизма через кулачок 1 и рычаг 7 на зубчатый сектор 5, находящийся в зацеплении с зубчатой рейкой черпака 4.

Черпак движется поступательно в направляющей втулке. Положение черпака определяет уровень масла в черпательной камере, а следовательно, и в полости гидромуфты, обуславливая тем самым определенное скольжение. Предельное положение черпака фиксируется стопором 3. На корпусе гидромуфты имеется указатель положения черпака.

Закрепленный на корпусе 12 золотник 11 может разделить масло на два потока: в полость гидромуфты и сброс в маслобак. Масло подводится в центр золотника, а отводится через регулирующие окна в верхней и нижней части 10.

Вращение на золотник передается от валика зубчатого сектора через кулачок 2, двухплечий рычаг 6, тягу 15 и рычаг 13, установленный на валике золотника. Продольная тяга имеет пружину 14, которая обеспечивает обратное движение золотника.

Кулачок 2 спрофилирован таким образом, чтобы обеспечить максимальную подачу масла в гидромуфту при режиме наибольшего в ней тепловыделения. Золотник предохраняет гидромуфту от переполнения, а черпаковую трубу – от чрезмерной перегрузки.

Постоянный контакт рычага 6 с кулачком 2 осуществляется за счет противовеса 8. Вал исполнительного механизма имеет подшипниковую опору 9.

Применение гидромуфт дает возможность повысить экономичность работы насосного агрегата при частичных нагрузках, увеличивает долговечность работы насоса и арматуры, а также позволяет привести в соответствие напорные характеристики параллельно работающих насосных агрегатов.

Для резервных питательных насосов энергоблоков до 300 МВт применяются одноступенчатые повысительные передачи с передаточным отношением до 2,2.

Шевронная зубчатая пара установлена в подшипниках с принудительной смазкой. Подшипники располагаются в чугунном корпусе редуктора, который имеет осевой разъем в горизонтальной плоскости.

Шестерня выполнена как одно целое с валом из стали 40Х. Зубчатое колесо – бандажированное: на вал из стали 45 насажена ступица и обод зубчатого колеса из стали 40Х. Редуктор имеет торсионный вал для соединения с насосом.

Достоинства и недостатки

Основным достоинством гидромуфты считается возможность плавного регулирования крутящего момента, который передается от двигателя на трансмиссию. Использование гидромуфты позволяет ограничить максимальный передаваемый крутящий момент и таким образом обезопасить трансмиссию от поломок и перегрузок.

Недостатком такой конструкции является снижение КПД, которое происходит вследствие потерь в масле при передаче крутящего момента. Большая часть потерь связана с преобразованием механической энергии вращения в тепловую, которая расходуется на нагрев масла и корпуса турбины. Такие потери приводят к увеличению расхода топлива.

Ремонт и замена масляного насоса

масляный насос

Практика показывает, что если маслонасос неисправен, скорее всего, придется его менять. Первым признаком того, что нужно купить масляный насос, является увеличенный расход масла и значительное отклонение давления от нормы. Необходимо немедленно отправиться на СТО за помощью квалифицированных специалистов.

Самостоятельно устранить поломку можно лишь в том случае, если точно знать, что именно привело к ее возникновению. Однако обычно механизм меняют полностью – цена масляного насоса вполне доступна.

Количество же предложений на рынке позволяет подобрать деталь, которая точно подойдет конкретному транспортному средству. Важно помнить, что после демонтажа старого оборудования и установки нового необходимо убедится в герметичности соединений, а также заменить моторное масло и фильтры.

Читайте так же:
Какие выключатели нужны для проходного выключателя

Маслонасос – важнейший элемент двигателя, и его состоянию необходимо уделять максимум внимания. Своевременная профилактика, регулярная доливка масла, а также использование смазочных материалов надлежащего качества – вот гарантия продолжительности ресурса детали и надежной работы силового агрегата.

Приводы выключателей и разъединителей — Электрическая часть электростанций

Надежная работа и безопасное обслуживание выключателей высокого напряжения невозможны без надежного привода, обеспечивающего безотказное выполнение операций включения и отключения выключателей и разъединителей вручную и автоматически. Монтаж привода должен быть по возможности простым и не требовать специальных знаний, он не должен требовать и точных работ по установке и регулировке привода.

При выборе типа привода прежде всего необходимо определить, для автоматических или неавтоматических операций он предназначается. Неавтоматические выключатели с более простыми приводами требуются в относительно редких случаях, например для размыкания шлейфов в сетях высокого напряжения. Как правило, выключатели работают автоматически.

Многие конструкции выключателей требуют механизма свободного расцепления в их приводах, который служит двоякой цели: обеспечивает быстрое отключение и при включении на неустраненное к. з. автоматически отключает выключатель, несмотря на то, что орган управления находится в положении «Включено».

В настоящее время существуют следующие типы приводов: ручные — с предварительным запасанием энергии включения и без него; электрические — также с запасанием энергии включения и без него; пневматические — работающие на сжатом воздухе; гидравлические — работающие на масле под давлением.

Электрические приводы подразделяются на электромагнитные (соленоидные) и двигательные. В некоторых случаях последние снабжаются аккумулятором энергии, в этом случае их называют инерционными приводами.

Выключатели с автоматическим приводом допускают дистанционное управление, а выключатели с ручным приводом могут управляться дистанционно только после ручного завода пружины на месте установки выключателя.

К различным типам приводов предъявляются следующие требования: а) пневматические и гидравлические приводы должны работать надежно при отклонениях давления рабочей среды перед управляющим клапаном от нормального в пределах от + 10 до —10%; б) двигательные приводы прямого действия должны надежно работать при отклонениях напряжения на зажимах двигателя от номинального в пределах от +10 до —20 %; в) инерционные двигательные приводы должны надежно запасать энергию в накопителе энергии (маховике) при отклонениях напряжения на зажимах двигателя в пределах от +10 до —20 %; г) электромагнитные (соленоидные) приводы прямого действия должны надежно работать при отклонениях напряжения на их зажимах в пределах от +10 до —20 %.

У всех приводов при недопустимом понижении или даже полном исчезновении давления или напряжения подвижные элементы не должны оставаться в промежуточном положении.

Ручной привод прямого действия допускается устанавливать для выключателей с отключаемой мощностью не более 200 MB. А и максимальным включаемым током не более 10 кА.

Ручной привод применяется для выключателей нагрузки, разъединителей и заземляющих разъединителей всех напряжений, а для выключателей — только на напряжения до 35 кВ. Для выключателей с номинальным напряжением 35 кВ ручные приводы по большей части служат в качестве аварийного резерва к основному автоматическому приводу.

Приведение в действие ручного привода осуществляется рычагом или маховиком. В ручном маховичном приводе типа ПМ-10 соединение привода с валом выключателя производится при помощи рычага, шарнирно соединенного с пальцем на валу выключателя. Включение таким приводом производится поворотом маховика вручную, а отключение — либо вручную, либо автоматически от реле минимального напряжения. Привод имеет механизм свободного расцепления.

Рычажные приводы типа ПРБА и ПРА включают выключатели при повороте рычага, соединенного с валом выключателя; отключение может производиться либо вручную, либо автоматически. В обоих типах приводов имеется механизм свободного расцепления, позволяющий отключать выключатель в любом его положении как вручную, так и автоматически при помощи встроенных в привод отключающих элементов.

Ручные приводы имеют простую и надежную конструкцию, удобны в эксплуатации, но нашли ограниченное применение. Главным и существенным недостатком является невозможность включения с их помощью выключателей дистанционно и автоматически.

В электромагнитных приводах применяют электромагниты с перемещением сердечника вверх или вниз, а также с поворотными сердечниками. У нас нашли широкое применение приводы с движением сердечника вверх. Для приведения в действие электрических приводов требуется достаточно мощный источник постоянного тока (до 50 кВт), например аккумуляторная батарея, так как электромагниты переменного тока требуют слишком большой реактивной мощности. Электромагниты с линейным перемещением сердечника имеют то преимущество, что в конце хода сердечника тяговая сила электромагнита увеличивается и это способствует более сильному прижатию контактов выключателя друг к другу.

Электромагниты с поворотным сердечником допускают непосредственное соединение последнего с валом выключателя.

Для двигательного привода можно использовать как постоянный, так и переменный ток. Потребление мощности двигательными приводами примерно наполовину меньше, чем электромагнитными. Включение производится через червячную передачу, увеличивающую момент привода. В двигательных приводах, применяемых для выключателей, часть энергии запасается в маховике, так как в конце процесса включения требуется развивать большие моменты, чем в начале. При исчезновении напряжения в процессе включения не должно быть нежелательных последствий. Отключение выключателя производится пружиной, которая заводится при включении.

Двигательные приводы прямого действия в настоящее время не выпускаются и не применяются в нашей стране, однако на некоторых старых установках их еще можно встретить.

Инерционные двигательные приводы в нашей стране также не изготовляются, так как их конструкция сложна, они дороги и в надежности уступают электромагнитным приводам.

Пневматические приводы работают на сжатом воздухе и состоят из преобразователя энергии сжатого воздуха в механическую и из системы рычагов, передающих включающее усилие приемному рычагу выключателя. Их преимуществами по сравнению с электрическими приводами являются: простота конструкции, малые габариты, высокая скорость включения, мягкое (безударное) включение, легкость накопления энергии в простых воздушных резервуарах. Поэтому в последнее время пневматический привод распространяется также в электроустановках, в которых нет воздушных выключателей. Для получения сжатого воздуха устанавливают малые компрессоры на 0,5—1,0 МПа и соответствующие резервуары сжатого воздуха.

Читайте так же:
Прайс лист выключатель автоматический s201

Приводы воздушных выключателей обычно эксплуатируются при том же давлении, что и дутье (1,5—4,0 МПа). В этих выключателях в зависимости от их конструкции сжатый воздух может непосредственно приводить в движение подвижный контакт, без промежуточного преобразования энергии сжатого воздуха в механическую в специальном приводном механизме.

Сжатый воздух может также применяться в приводах других конструкций для предварительного завода включающих или отключающих пружин.

Для современных сверхмощных выключателей 500—750 кВ с отключающей мощностью 20—50 ГВ.А требуются приводы, способные совершать весьма большую работу и производить операции включения и отключения чрезвычайно быстро: собственное время привода должно быть сведено практически к нулю. Такими возможностями не обладают пневматические приводы, которые к тому же имеют пониженную надежность в электрическом отношении из-за возможной конденсации влаги на внутренних поверхностях воздухопроводов. Эти недостатки отсутствуй т у гидравлических приводов, к которым для передачи силовых импульсов к валу выключателя используется жидкость, преимущественно масло, под давлением.

Благодаря практической несжимаемости жидкости эти импульсы передаются мгновенно, и собственное время такого привода бесконечно мало. В нашей стране пока созданы только опытные образцы пневмогидравлических приводов, но, несомненно, они имеют большую перспективу. За рубежом пневмогидравлические приводы наиболее распространены во Франции, где применяются с 1954 г. Французские пневмогидравлические приводы работают при давлении масла до 30 МПа, что оказывается возможным при прочноплотных трубах из изоляционного материала, армированного стекловолокном. Вязкость масла в системе остается неизменной до температуры —50 °С. В системе привода установлен гидропневматический аккумулятор, в котором запасается достаточная энергия для нескольких циклов работы привода.

Энергия расходуется только на включение, а отключение выключателя производится пружиной. Давление в резервуаре поддерживается автоматически периодической подкачкой насосом мощностью 0,3 кВт. Для повышения надежности параллельно с автоматическим установлен также ручной насос, который используется для подкачки масла при отсутствии электрической энергии.

Еще более быстродействующими являются системы управления с пневмосветовой передачей командных импульсов на выключатель.

Повышение номинального напряжения выключателя сопровождается значительным увеличением высоты аппарата, т. е. увеличением времени прохождения командного импульса от заземленных частей выключателя к элементам, находящимся под напряжением. Соответственно этому увеличивается и собственное время, отключения выключателя. В выключателях на сверхвысокие напряжения длительность командного импульса составляет существенную часть их собственного времени отключения. Использование светового луча для передачи командных импульсов позволяет значительно уменьшить время отключения. В разрабатываемой в настоящее время пневмосветовой системе управления воздушным выключателем подвесного типа на напряжение 1150 кВ передача командных импульсов от передающего устройства, находящегося на потенциале земли, к приемному устройству, расположенному на высоком потенциале, осуществляется световым потоком инфракрасного диапазона, создаваемым светодиодами. Этот световой поток отбрасывается зеркалами на фокусирующие линзы, а от них на фотодиоды. Световые сигналы, принимаемые фотодиодами, преобразуются в электрические импульсы и вызывают срабатывание исполнительных механизмов.

Система управления с пневмосветовой передачей позволяет передать по одному оптическому каналу команды на включение и отключение выключателя, а также получить сигнал о его положении (включен или отключен) при любых расстояниях между заземленными частями выключателя и его элементами, находящимися под напряжением.

Основными элементами системы управления с пневмосветовой передачей являются передающее устройство, оптический канал, приемное устройство и пневматическая система.

Передающее устройство состоит из элементов, принимающих электрические командные импульсы от цепей защиты и управления, и элементов, преобразующих эти импульсы в световое излучение закодированной частоты. Для преобразования электрических сигналов в световые в рассматриваемой схеме используются светодиоды, хотя для этой цели могут быть применены и другие источники излучения, как, например, лазеры, импульсные ксеноновые или неоновые лампы.

Оптический канал служит для передачи световых импульсов от передающего устройства к фотодиодам. Он представляет собой изоляционную трубку с входной и выходной линзами либо разветвленный стекловолоконный светопровод.

Приемное устройство состоит из фотоприемника, дешифраторов команд и исполнительных механизмов команд включения и отключения. Исполнительный механизм состоит из блока электромагнитных механизмов и блока клапанов управления.

При отключении выключателя подается командный электрический импульс в передающие устройства каждого полюса выключателя. Командный электрический импульс преобразуется в излучение светодиода, которое, попадая на зеркала, установленные в световом канале, отбрасывается на фотоприемники, вызывая фототок, поступающий по кабелям в приемные устройства. Приемные устройства срабатывают и замыкают цепь автономного источника питания электромагнитных механизмов, открывающих клапаны управления пневмосистемой, которая и осуществляет отключение выключателя.

Таким же образом подается командный импульс и на включение выключателя, только приемное устройство выдает команду на электромагнит включения.

Разработанная система управления с пневмосветовой передачей позволила получить следующие временные характеристики: время включения выключателя 0,088 с при неодновременности замыкания отдельных полюсов 0,002 с; время от подачи команды на отключение до размыкания контактов дугогасительного устройства 0,022 с при неодновременности размыкания контактов отдельных полюсов 0,002 с.

Все элементы опытной пневмосветовой системы управления надежно работали при температурах от минус 60 до плюс 50 °С.

Автоматический выключатель с моторным приводом 2500

где Э — модификация автоматического выключателя с микропроцессорным блоком управления;
— 25-Х1 — индекс обозначающий исполнение выключателя;
— В-Х2 — Выдвижной тип установки;
— 2500А — Номинальный ток выключателя.

Предназначение:
для работы в цепях электричества с номинальным напряжением постоянного тока до 440В, переменного тока до 660В частотой 50 или 60 Гц.

Выполняемый функционал:
проведение тока в нормальном режиме и его отключение при коротких замыканиях и перегрузках, а также при нечастых (до 3-х раз в час) оперативных коммутациях эл. цепей.

Находят применение в электротехнических установках различных мощностей.

Читайте так же:
Выключатель герметический что это

Особенности:
Имеют моторный привод, что позволяет осуществлять дистанционное управление.

Выдвижное исполнение:

Внешний вид, габаритные, установочные и присоединительные размеры:

ВНИМАНИЕ: Уважаемые покупатели, будте бдительны! Участились случаи обращений по контрафактной продукции. Закупайте продукцию у официальных дилеров, либо на Заводе изготовителе.

Гарантийные обязательства распространяются только на оригинальную продукцию завода.

Купить Выключатель Э25В 2500А можно обратившись по телефонам (343) 383-33-33, 319-54-69, 319-50-03, 345-54-69 или по электронной почте info@elektrokontaktor.ru

454010, РФ, г. Челябинск, ул. Енисейская, 75-б
Почтовый адрес: 454010, г. Челябинск, а/я 2167
Мы работаем по будням с 08:30 до 17:30

ЗВОНИТЕ! (343) 383-33-33, 319-54-69, 319-50-03, 345-54-69
ПИШИТЕ! info@elektrokontaktor.ru

Вся представленная на сайте информация, касающаяся технических характеристик, наличия на складе, стоимости товаров, носит информационный характер и ни при каких условиях не является публичной офертой, определяемой положениями Статьи 437 Гражданского кодекса РФ.

При копировании и последующем использовании материалов, размещенных на сайте, ссылка на сайт www.elektrokontaktor.ru обязательна.

Политика конфиденциальности Соглашение об использовании сайта

Выключатель автоматический ВА-45 3200/2500 3P 80кА выкатной EKF PROxima

Автоматические выключатели серии BA-45 EKF PROxima являются воздушными выключателями с механизмом свободного расцепления и оперирования контактами посредством механизма с пружинным накопителем энергии. Конструктивно выключатель выполнен в виде механической конструкции, смонтированной на жесткой раме.Основные органы управления и индикации выведены на лицевую панель.Полный набор аксессуаров для расширения функций.

270 987 руб.

Цена за розничную
упаковку

270 987 руб.

361 315 руб.

270 987 руб.

  • Характеристики
  • Преимущества
  • Описание
  • Применение
  • Документация
  • Обучение
  • Отзывы
Выключатель автоматический ВА-45 3200/2500 3P 80кА выкатной EKF PROxima
Характеристики
Статус:Регулярная
Номин. откл. способность Icu, при 400 В, 50 Г, кА100
Номин. отключающая способность по ГОСТ IEC 60898-1-1, кА100
Номинальный ток, А2500
Количество полюсов3
Диапазон уставки тока расцепления, А1000. 2500
Номин. напряжение, В400. 690
Подходит для монтажа на DIN-рейку (с Ω-профилем)Нет
Встроенная защита от замыканий на землюДа
Моторный привод опциональноНет
С расцепителем минимального напряженияДа
Количество вспомогат. нормально разомкнутых (НО) контактов
Конструкция прибораВыдвижное/выкатное устройство
Срок службы, лет10
Диапазон регулировки без задержки срабатывания расцепителя короткого замыкания, А10000. 200000
СерияPROxima
Крепление на DIN рейкуНет
Есть штрихкод на каждой штуке товараДа
Тип элемента управленияКнопка нажимная
Диапазон краткосрочной задержки расцепителя короткого замыкания, А10000. 25000
Возможность установки индикатора отключенияДа
Количество вспомогат. нормально замкнутых (НЗ) контактов
Тип подключения силовой электрич. цепиБолтовое соединение
Моторный привод встроенныйДа
Вид подключения главной электрич. цепиЗадняя сторона
Номин. отключающая способность по ГОСТ IEC 60898-1, кА100
Степень защиты (IP)IP30
Количество вспомогат. переключающих контактов4
Гарантийный срок эксплуатации, лет7
Комплектное устройство с утройством защитыДа
Преимущества

Дополнительные контакты в базовой комплектации

Стационарное и выкатное исполнение

Независимый расцепитель в базовой комплектации

Серебросодержащие композитные напайки с вольфрамом на главных контактах

Катушки включения/отключения в базовой комплектации

Ручное и дистанционное управление ModBus под заказ

Микропроцессорный расцепитель с селективной программируемой защитой

Сборка отсутствующей конфигурации на заказ

Электропривод в базовой комплектации

Токоведущие части из электротехнической меди

Присоединительные шины из электротехнической меди с покрытием серебром

Описание

Автоматические выключатели серии BA-45 EKF PROxima являются воздушными выключателями с механизмом свободного расцепления и оперирования контактами посредством механизма с пружинным накопителем энергии. Конструктивно выключатель выполнен в виде механической конструкции, смонтированной на жесткой раме.Основные органы управления и индикации выведены на лицевую панель.Полный набор аксессуаров для расширения функций.

Применение

В качестве вводных автоматических выключателей в электрощите для обеспечения объектов гражданского жилого строительства, коммерческих строительных объектов, производственных площадок.
Применяется:
• для защиты цепей электродвигателей;
• защиты отходящих линий, в том числе в ГРЩ, ЩС;
• в схемах автоматического включения резервного питания с секционированием (на трех выключателях) и без секционирования (на выключателях).
Допускается применение автоматических выключателей совместно с электроприводами для осуществления коммутаций и автоматического управления работой электрооборудования:
• дистанционные коммутации электрооборудования;
• в схемах диспетчеризации и энергосбережения.

Автоматические выключатели ВА-45/3200 EKF

Ассортимент:

ВА-45 3200/2000А 3P 80кА

Цена: 189 431,98 pуб.

ВА-45 3200/2500А 3P 80кА

Цена: 198 452,54 pуб.

ВА-45 3200/2900А 3P 80кА

Цена: 192 271,30 pуб.

Силовой автоматический выключатель ВА-45/3200 предназначен для осуществления функций защиты силовых электрических сетей переменного тока низкого напряжения (до 690 В) от токов перегрузки и короткого замыкания, в том числе с выдержкой времени. Автоматы ВА-45 EKF оборудованы микропроцессорным управлением на номинальные токи от 630 до 5000 А. Микропроцессорные блоки защиты и управления позволяют информировать оператора, о состоянии нагрузки и параметрах защищаемой сети, в том числе отдельно по каждой фазе, о причинах автоматического отключения сети выключателем, о состоянии самого выключателя и его главных контактов. Выключатели предназначены для монтажа в распределительные шкафы, в том числе в выкатных ячейках шкафов (выдвижное исполнение).Специальные исполнения выключателей предназначены для применения в электроустановках морских судов.

Преимущества:

1. Полный номенклатурный ряд аппаратов — до 5000 А;
2. Селективная программируемая защита;
3. Коммутационная способность до 100 кА;
4. Гарантийные обязательства составляют 5 лет.

Фотогалерея
  • Сертификат ВА-45[122.99 КБ]
  • Силовые автоматические выключатели
  • Большинство электросетей, функционирующих на сегодняшний день в России, испытывают огромные нагрузки и работают, что называется, на пределе своих возможностей. Дело в том, что они проектировались и создавались в те времена, когда даже предположить было сложно, что к ним будет подключаться такое количество различных устройств, начиная от мощного промышленного оборудования и заканчивая множеством бытовых электроприборов. Для того чтобы в случае возникновения перегрузок избежать аварий, чреватых очень серьезными последствиями, используются силовые автоматические выключатели.
голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector