Ele-prof.ru

Электро отопление
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как рассчитать температуру нити лампы накаливания в номинальном режиме

Как рассчитать температуру нити лампы накаливания в номинальном режиме

Как известно, с увеличением температуры металла, его электрическое сопротивление растет. Для различных металлов, в связи с данным явлением, характерен свой температурный коэффициент сопротивления α, который можно без особого труда найти в справочнике.

Причина этого явления заключается в том, что тепловые колебания ионов кристаллической решетки металла с ростом температуры становится более интенсивными, и образующие ток электроны проводимости сталкиваются с ними чаще, расходуя больше энергии на эти соударения. А поскольку сам ток (по закону Джоуля-Ленца) приводит к нагреву проводника, то как только через проводник начинает течь ток — сразу начинает возрастать и сопротивление этого проводника.

Подобным образом возрастает сопротивление нити накаливания лампы, когда ее подключают к источнику питания. Давайте найдем температуру нити накаливания лампы в номинальном режиме ее работы.

Как рассчитать температуру нити лампы накаливания в номинальном режиме

Температурный коэффициент сопротивления вольфрама (из которого и изготовлена нить лампы накаливания) равен α = 0.0045/К, причем он связан с изменением сопротивления (вместе с изменением температуры) следующим соотношением:

R0-сопротивление нити накаливания при 0°С;

R-сопротивление нити накаливания при текущей температуре t.

Сопротивление R0 нити накаливания при 0°С нам не известно, его сейчас нужно косвенным путем определить. Для этого сначала при помощи мультиметра измерим сопротивление лампы при комнатной температуре.

Далее взглянем на комнатный термометр, и узнаем таким образом температуру воздуха в комнате.

Если принять, что холодная нить накаливания лампы имеет точно такую же температуру, что и воздух в комнате, то сопротивление лампы при 0°С легко определить по формуле:

Сюда необходимо подставить:

t-температура в комнате (по термометру);

Rk-сопротивление нити накаливания лампы при текущей температуре в комнате (измерим мультиметром).

Итак, теперь нам известно сопротивление R0 нити накаливания нашей лампы при 0°С. Теперь, зная номинальную мощность лампы и ее номинальное напряжение, определим чисто математическим путем ее номинальное сопротивление Rn по следующей известной формуле:

Подставим сюда данные, указанные прямо на лампе:

U-номинальное напряжение лампы;

P-номинальная мощность лампы.

Теперь приведем самую первую формулу к следующему виду, и подставим только что найденное номинальное сопротивление Rn, и сопротивление R0 при 0°С, которое было найдено выше, а также температурный коэффициент сопротивления α = 0.0045/К для вольфрама (взятый из справочника):

Вот мы и нашли реальную температуру нити накаливания лампы в рабочем состоянии, не измеряя ее прямо, а лишь зная номинальную мощность P, номинальное напряжение сети U, сопротивление в холодном состоянии Rk, комнатную температуру t и температурный коэффициент сопротивления вольфрама α.

Расчет освещения.

Предлагаем вам разобраться как правильно осуществить расчет освещения в зависимости от типа и размера помещения.

Степень освещения поверхности принято выражать в Люксах (Лк), а величину светового потока исходящего от определенного источника света измеряют в Люменах (Лм). Мы будем производить расчет уровня освещенности в два этапа:

  • первый этап — определения необходимой для помещения совокупной величины светового потока;
  • второй этап – исходя из полученных данных первого этапа — расчет нужного количества светодиодных ламп с учетом их мощности.

Этап №1 расчета.

Для простого расчета необходимого числа ламп воспользуйтесь Калькулятором расчета количества ламп.

Формулой = X * Y * Z рассчитывается показатель необходимой величины светового потока (Люмен) при этом:

  • X – установленная норма освещенности объекта в зависимости от типа помещения. Нормы приведены в Таблице №1,
  • Y – соответствует площади помещения в квадратных метрах,
  • Z — коэффициент поправки значений в зависимости от высоты потолков в помещении. При высоте потолков от 2,5 до 2,7 метра коэффициент равен единице, от 2,7 до 3 метра коэффициент соответствует 1,2; от 3 до 3,5 метров коэффициент составляет 1,5; 3,5 до 4,5 метров коэффициент равен 2.

Таблица №1 "Нормативы освещенности офисных и жилых объектов по СНиП"

Расчет освещения

Этап №2 расчета.

Получив необходимые данные о величине светового потока, мы можем вычислить необходимое количество светодиодных ламп и их мощность. В таблице №2 указаны значения мощности светодиодных ламп и соответствующие им показатели по световому потоку. Итак, делим полученное на этапе №1 значение светового потока на величину светового потока в люменах по подобранной лампе. В результате имеем нужное количество светодиодных ламп определенной мощности для помещения.

Таблица №2 "Значения светового потока светодиодных ламп разной мощности"

Расчет освещения

Пример расчета освещения.

Для примера предлагаем рассчитать количество и мощность светодиодных ламп для жилой комнаты в многоквартирном доме, размером 20 квадратных метров при высоте потолков 2,6 метра.

150 (X) * 20 (Y) * 1 (Z) = 3000 Люмен.

Теперь согласно таблице №2 подбираем лампу, которая подойдет в установленные осветительные приборы, и которыми мы хотим осветить нашу комнату. Предположим, мы берем все лампы в 10 Ватт, имеющие световой поток в 800 Люмен, то для освещения нашей комнаты такими светодиодными лампами нам потребуется не менее 3000/800=3,75 лампочек. В результате математического округления получаем 4 лампочки по 10 Ватт.

Важно помнить, что желательно в помещении добиться равномерного распределения света. Для этого лучше располагать несколькими источниками света. В случае если вы планируете создавать художественное освещение с несколькими светильниками, монтируемыми в потолок, мы советуем использовать 8 светодиодных лампочек по 5 Ватт каждая и равномерно распределить их по потолку.

Обратите внимание то за основу производимых расчетов мы взяли нормы СНиП принятые в нашей стране. Поскольку нормы эти разработаны и приняты были давно, многие наши клиенты говорят, что уровень освещения согласно этих норм для них мал и света явно недостаточно. Поэтому мы рекомендуем увеличивать эти нормы в 1,5-2 раза при этом устанавливая несколько выключателей, разделяя их по зонам помещения и по количеству светильников. Это позволит включить часть светильников и получить мягкое, не очень яркое освещение, а в случае необходимости, включить полное яркое освещение.

Cветодиодные лампы: мощность, таблица, расчет

Оснащение городской квартиры, загородного дома или приусадебной территории предполагает выбор определённого типа освещения, которое помогло бы, не только обеспечить жилые помещения комфортным светом, но и содействовать дизайну интерьеров и ландшафта, а также обеспечить безопасное передвижение по территории участка.

Производимые промышленностью светодиодные приборы, способны с успехом заменить традиционные лампы накаливания и потому их выбирает всё большее число собственников загородных помести.

Преимущества использования светодиодных приборов

Мощная светодиодная лампа позволит осветить помещения с высокими потолками, может быть использована в светильниках наружного освещения, способствовать ландшафтному дизайну.

Изготовители выпускают led лампы с цоколями Е40 или Е27, корпус которых, обеспечен защитой IP64, что позволяет использовать подобные источники света при различных погодных условиях.

Очевидны преимущества данных осветительных приборов:

  • способствуют многократной экономии электрической энергии;
  • не требуют изменений проекта системы освещения и дополнительных расчётов;
  • при включении практически сразу демонстрируют предельную мощность;
  • не выделяют ультрафиолетового и теплового излучения;
  • не меняют цветовое свечение и интенсивность, со временем;
  • не производят мерцания, вредных выделений, шума.

01-tablitsa-sravneniya-lamp

При выборе того или иного источника света, принято руководствоваться основным параметром – мощностью лед ламп. Благодаря данной характеристике, не трудно высчитывать количество энергии, преобразуемой прибором в свет, тем более что мощные светодиодные лампы обладают высоким уровнем эффективности.

02-moshhnost-svetovoj-potok

Так, одинаковое свечение у LED лампочки, требующее 6 Вт, для иных осветительных приборов потребует 60-ти, потому, для создания одинакового уровня освещённости разным источникам необходимо различное количество энергии.

Светодиодные лампы большой мощности обладают:

  • достаточно крупными габаритами;
  • большим количеством светодиодов встроенного типа.

Так, лампы «кукуруза» превосходно зарекомендовали себя при использовании для освещения:

  • городских улиц;
  • парков;
  • территории дачных участков;
  • складских и производственных помещений с высокими потолками,

к тому же изготовители оснащают светодиодные лампы большой мощности встроенными линзами, что позволяет увеличить угол освещения до 140˚.

03-formy-lamp

Мощность светодиодной лампы и другие характеристики

Использование светодиодных ламп позволит значительно сократить расходы на электроэнергию. Простой расчёт, исходя из норм освещения и выбора определённых параметров освещённости, например, кухонного помещения позволит доказать это.

Так основными параметрами ламп различного типа являются:

  • мощность, измеряемая в Ваттах, то есть количество энергии потребляемое осветительным элементом;
  • цветопередача – оттенок света у источника излучения, измеряемая в Кельвинах;
  • световой поток – количество света отдаваемое светильником, который показывает эффективность источника,

так как, чем выше данная характеристика, тем результативнее прибор использует энергию.

Так, вольфрамовые лампы мощностью в 40 Вт имеют светоодачу 10, 4лм/Вт,

люминесцентные — 84 лм/Вт,

светодиодная лампа, мощность которой 40Вт — 86 лм/Вт.

Мощность светодиодных ламп для оснащения дома

Для расчёта потребуется такой показатель как освещённость — необходимый поток света на 1м², измеряемая в люксах. Таким образом: 1лк = 1лм х 1м².

Рассчитанные нормы собраны в документации СНиП, из которых можно сделать выписку и узнать необходимые параметры освещённости для помещений различного назначения.

Кроме того, алгоритм расчёта освещённости позволяет разделить объём помещения на условные зоны, где нужен более интенсивный или умеренный свет и поместить в них соответствующие осветительные приборы.

04-sootnoshenie-moshhnosti-i-svetovogo-potoka

Следовательно, для оснащения комнат потребуется определённое количество осветительных приборов, с источниками определённой мощности. Соотношение экономичных светодиодных ламп с мощностью традиционных источников света даны в таблице:

Результат расчёта площади умноженный на необходимую освещённость в соответствии с нормативами СНиП позволяет определить мощность параметр необходимых источников света в люменах и приобрести нужное количество приборов.

Промышленность выпускаются светодиодные элементы, которые не потребуют много усилий при установке, разработке и расчётах новой схемы но позволят обеспечить оптимальное освещение как внутри дома, так и на приусадебном участке, сэкономив на оплате за коммунальные услуги.

Где купить светодиодные лампы

Максимально быстро закрыть вопрос можно, посетив ближайший специализированный магазин. Оптимальным же, по соотношению цена-качество, остаётся вариант покупки в Интернет-магазине АлиЭкспресс. Обязательное длительное ожидание посылок из Китая осталось в прошлом, ведь сейчас множество товаров находятся на промежуточных складах в странах назначения: например, при заказе вы можете выбрать опцию «Доставка из Российской Федерации»:

Переменный ток

На рисунке приведён график зависимости силы тока от времени в колебательном контуре, состоящем из последовательно соединённых конденсатора и катушки, индуктивность которой равна 0,2 Гн. Каково максимальное значение энергии магнитного поля катушки? (Ответ дать в мкДж.)

Энергия магнитного поля: [W=frac<2>,] где (L) – индуктивность катушки, (I) – сила тока на катушке.
Максимальная сила тока: [I_=5 text< мА>]
Подставим в формулу энергии магнитного поля: [W=frac<0,2text< Гн>cdot5^2cdot10^<-6>text< А$^2$>><2>=2,5 text< мкДж>]

К конденсатору, заряд которого 250 пКл, подключили катушку индуктивности. Определите максимальную силу тока (в мА), протекающего через катушку, если циклическая частота свободных колебаний в контуре (8cdot10^7) рад/с.

Период колебаний электромагнитного контура вычисляется по формуле Томсона: [T=2pisqrt,] где (L) – индуктивность катушки, (C) – ёмкость конденсатора.
Циклическая частота: [omega=frac<1>> Rightarrow LC=frac<1>]
Закон сохранения для колебательного контура [W_=W_C] [frac^2><2>=frac^2><2>=frac^2><2C>,] где (L) – индуктивность катушки, (I-) – максимальная сила тока на катушке, (C) – ёмкость конденсатора, (U_) – максимальное напряжение, (q_) – максимальный заряд на конденсаторе.
Тогда максимальная сила тока равна [I_=sqrt^2>>=q_omega=250cdot10^<-12>text< Кл>cdot8cdot10^7text< рад/с>=20 text< мА>]

Заряженный конденсатор емкостью 4 мкФ подключили к катушке с индуктивностью 90 мГн. Через какое минимальное время (в мкс) от момента подключения заряд конденсатора уменьшится в 2 раза?

Период колебаний электромагнитного контура вычисляется по формуле Томсона: [T=2pisqrt,] где (L) – индуктивность катушки, (C) – ёмкость конденсатора. Циклическая частота: [omega=frac<1>>] Так как конденсатор изначально заряжен, то колебания можно описывать законом: [q=q_cos(omega t)] [q=0,5q_] Заменим циклическую частоту на (frac<1>>) и получим [0,5q_=q_cosleft(frac<1>> tright) Rightarrow frac<1>> t=frac<3>] [t=frac><3>=628 text<мкс>]

Напряжение на концах участка цепи, по которому течет переменный ток, изменяется со временем по закону: (displaystyle U = U_0sinleft(omega t + frac<2pi><3>right)) . В момент времени (t = T/12) мгновенное значение напряжения равно 9 В. Определите амплитуду напряжения.

Зависимость напряжения: [U = U_0sinleft(omega t + frac<2pi><3>right),] (omega) – циклическая частота. [U=U_0sinleft(frac<2pi>cdotfrac<12>+frac<2pi><3>right)] [U=frac<2>] [U_0=2U=18 text< В>]

Напряжение, при котором зажигается или гаснет неоновая лампа, включенная в сеть переменного тока, соответствует действующему значению напряжения этой сети. В течение каждого полупериода лампа горит 2/3 мс. Найдите частоту переменного тока.

Зависимость напряжения: [U = U_0sin(omega t),] (omega) – циклическая частота. Действующее напряжение: [U_>=frac>] [U_> < U_0sin(omega t)] [frac> < U_0sin(omega t )] [sin(omega t)>frac><2>] [sin(frac<2pi>t)>frac><2>] Решая это тригонометрическое неравенство на одном периоде синусоиды получаем, что [frac<4><frac<2pi>t<frac<3pi><4>] [frac<1><8><frac<1>t<frac<3><8>] [t=frac<4>] [T=4t] [nu=frac<1><4t>=frac<3><2cdot4cdot10^<-3>>=375 text< Гц>]

Сила тока в первичной обмотке трансформатора 2 А, напряжение на ее концах 220 В. Напряжение на концах вторичной обмотки 40 В. Определите силу тока во вторичной обмотке. Потерями в трансформаторе пренебречь.

Для идеального трансформатора можно записать ( (P_1=P_2) ): [I_1U_1=I_2U_2] где (I_1) и (I_2) – силы тока на первичной и вторичной обмотках, (U_1) и (U_2) – напряжения на первичной и вторичной обмотках, тогда сила тока на вторичной обмотке равна [I_2=frac=frac<2text< А>cdot220text< В>><40text< В>>=11 text< А>]

Под каким напряжением находится первичная обмотка трансформатора, имеющая 1000 витков, если во вторичной обмотке 3500 витков и напряжение на ней 105 В?

Для трансформатора справедливо: [frac=frac,] где (U_2) и (U_1) – напряжения на вторичной и первичной обмотках, (N_2) и (N_1) – количество витков на вторичной и первичной обмотках, тогда напряжение на первичной обмотке [U_1=frac=frac<105text< В>cdot1000><3500>=30 text< В>]

Задачи на работу и мощность электрического тока с решением

Задачи на работу и мощность электрического тока с решением

В сегодняшней статье мы займемся решением задач на тему «Работа и мощность постоянного тока». Вдруг кому-нибудь пригодится.

Кстати, много полезной информации для студентов, а также приятные скидки, вы найдете на нашем телеграм-канале. Подписывайтесь!

Работа и мощность тока: задачи с решением

Перед непосредственным решением задач на работу и мощность электрического тока повторите теорию, ознакомьтесь с общей памяткой по решению задач. Также мы собрали для вас вместе более 40 формул по физике, держите их под рукой.

Задача №1. Мощность электрического тока

Условие

Сопротивление нити накала электрической лампы составляет 400 Ом, а напряжение на нити равно 100 В. Какова мощность тока в лампе?

Решение

По определению, мощность тока на участке цепи равна работе, деленной на время, за которое она была совершена:

Подставим значения, и найдем мощность:

Ответ: 25 Вт.

Задача №2. Расчет мощности электрического тока

Условие

Два резистора соединены параллельно и последовательно. В каком из двух резисторов мощность тока больше (и во сколько раз) соответственно при параллельном и последовательном соединении?

Решение

1) При последовательном соединении сила тока в каждом резисторе одинакова, а мощность тока напрямую зависит от сопротивления резисторов:

Мощность тока во втором резисторе больше в 10 раз.

2) При параллельном соединении на резисторах будет разная сила тока, но одинаковое напряжение. Для мощности тока целесообразно использовать формулу:

Мощность тока в первом резисторе больше в 10 раз.

Ответ: В 10 раз больше во втором резисторе; в 10 раз больше в первом резисторе.

Задача №3. Работа электрического тока

Условие

Какова работа электрического тока в паяльнике, если сила тока в цепи равна 3 А, а сопротивление паяльника – 40 Ом? Время работы паяльника – 30 минут. Какое количество теплоты выделится в паяльнике за это время?

Решение

По закону Джоуля-Ленца, работа тока на наподвижном проводнике с сопротивлением R, преобразуется в тепло.

При вычислениях не забывайте переводит все величины в систему СИ.

Работа тока равна выделившемуся количеству теплоты.

Ответ: 648 кДж.

Задача №4. Расчет работы электрического тока

Условие

Какую работу ток совершает в электродвигателе за 20 минут, если сила тока в цепи равна 0,2 А, а напряжение составляет 12 В.

Решение

Применим формулу для работы тока:

Ответ: 2880 Дж.

Напоследок мы приберегли для вас задачу посложнее.

Задача №5 на закон Джоуля-Ленца

Условие

Сила тока в проводнике сопротивлением R=20 Ом нарастает в течение времени Δt=2 с по линейному закону от I0=0 до Imax=6 А. Определить количество теплоты Q1, выделившееся в этом проводнике за первую секунду, и Q2 — за вторую, а также найти отношение этих количеств теплоты Q2/Q1.

Решение

Закон Джоуля – Ленца применим в случае постоянного тока (I =const). Если же сила тока в проводнике изменяется, то указанный закон справедлив для бесконечно малого промежутка времени и записывается в виде:

Здесь сила тока I является некоторой функцией времени. В нашем случае I=kt, где k — коэффициент пропорциональности, равный отношению приращений силы тока к интервалу времени, за который произошло это приращение:

С учетом этого, формула для количества теплоты примет вид:

Для определения количества теплоты, выделившегося за конечный промежуток времени, выражение для бесконечно малого количества теплоты следует проинтегрировать в пределах от t1 до t2:

При определении количества теплоты, выделившегося за первую секунду, пределы интегрирования t1 =О, t2= 1 с и, следовательно, Q1=60 Дж, а за вторую секунду — пределы интегрирования t1= 1 с, t2=2 с и тогда Q2=420 Дж.

Кстати, читайте в нашем блоге о том, как считать интегралы.

За вторую секунду выделится теплоты в 7 раз больше, чем за первую секунду.

Ответ: 60 Дж; 420 Дж; в 7 раз больше.

Вопросы на работу и мощность электрического тока

Вопрос 1. Что такое работа электрического тока?

Ответ. Работа электрического тока – это физическая величина, которая показывает, какая работа была совершена электрическим полем при перемещении зарядов по проводнику. Она равна произведению силы тока на участке цепи, напряжению на концах этого участка и времени, в течение которого протекает ток по проводнику.

Единица измерения работы – 1 Джоуль.

Вопрос 2. Сформулируйте закон Джоуля-Ленца.

Ответ. Это эмпирический закон преобразования работы тока в тепло. Он был экспериментально установлен независимо друг от друга Дж. Джоулем и Э. Ленцем.

Работа электрического тока, протекающего по неподвижному проводнику с сопротивлением R, преобразуется в тепло, выделяющееся на проводнике.

При прохождении тока по проводнику положительные ионы в узлах кристаллических решеток проводника за счет энергии тока начинают сильнее колебаться, что сопровождается увеличением внутренней энергии проводника, т.е. его нагреванием.

Вопрос 3. Что такое мощность электрического тока?

Ответ. Мощность тока – физическая величина, характеризующая скорость совершения током работы. Мощность равна отношению работы к интервалу времени, за которые она была совершена:

Единицей измерения мощности является Ватт. 1 Ватт – это мощность, при которой за одну секунду совершается работа в 1 Джоуль.

Вопрос 4. Приведите пример внесистемной единицы измерения работы.

Ответ. На практике часто пользуются единицей, называемой ватт-час (втч). Так как в часе 3 600 секунд, 1 ватт-час равен 3 600 Дж.

Вопрос 5. Как измерить работу тока?

Ответ. В простейшем случае для измерения работы тока нужны амперметр, вольтметр и часы. На практике работу электрического тока измеряют с помощью счетчиков.

Нужна помощь в решении задач и выполнении других заданий? Профессиональный сервис для учащихся всегда к вашим услугам.

  • Контрольная работа от 1 дня / от 120 р. Узнать стоимость
  • Дипломная работа от 7 дней / от 9540 р. Узнать стоимость
  • Курсовая работа 5 дней / от 2160 р. Узнать стоимость
  • Реферат от 1 дня / от 840 р. Узнать стоимость

Иван Колобков, известный также как Джони. Маркетолог, аналитик и копирайтер компании Zaochnik. Подающий надежды молодой писатель. Питает любовь к физике, раритетным вещам и творчеству Ч. Буковски.

голоса
Рейтинг статьи
Читайте так же:
Три проходных выключателя с одной лампой схема
Ссылка на основную публикацию
Adblock
detector