Ele-prof.ru

Электро отопление
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Светодиодный аварийный светильник с аккумулятором

Светодиодный аварийный светильник с аккумулятором

Системы этого типа должны обеспечивать хорошую видимость на путях эвакуации при пожарах, в других опасных ситуациях. Основной компонент – аварийный светильник с аккумулятором. Для реализации соответствующего проекта без ошибок и с минимальными затратами необходимо изучить актуальные требования, модельный ряд. Пригодятся сведения о регламентных работах в процессе эксплуатации, которые помогут в комплексе оценить объем инвестиций на длительный расчетный период.

Действующими правилами установлены параметры качественного освещения всего маршрута аварийного выхода

Нормы действующего законодательства и основные определения

Аварийное освещение делят на группы в соответствии с целевым назначением. Кроме хорошей видимости на маршруте эвакуации, необходимо выделить зоны, где расположены потенциально опасные объекты. Такие решения приходится применять в цехах с промышленным оборудованием. В торговых и выставочных залах, других крупных помещениях сохранение приглушенного света предотвращает панику и соответствующим образом повышает уровень безопасности.

Дежурный светильник аварийный в операционной – обязательный компонент стандартного оснащения

К такому оборудованию предъявляют несколько требований. Необходима достаточная, но не чрезмерная сила света. Разумное потребление увеличивает длительность рабочего режима. Для повышения надежности штатное питание одиночных и групповых приборов подводят отдельной линией. Автономность обеспечивает встроенный аккумулятор. Особое внимание уделяют надежности в комплексе с организацией контрольных мероприятий.

Схема расстановки

Рисунок демонстрирует один из важнейших стандартов. Пригодной, по действующим строительным и пожарным нормам, является освещенность в самых темных местах не менее 1 люкс. Допустимая неравномерность обозначена пропорцией 1 к 40. Максимальный уровень будет в местах пересечения. Это значит, что мощность основного светового потока можно несколько уменьшить.

Следующим обязательным требованием является сохранение работоспособности не менее часа после отключения внешней сети питания. Также нормирована скорость включения – 50/100% через 5/10 секунд после перехода в аварийный режим, соответственно.

Где и как устанавливают автономные светильники

В следующем перечне приведены места, где монтаж аварийных светильников необходим по действующим правилам:

  • коридоры и проходы по всему маршруту;
  • эвакуации;
  • повороты и перекрестки;
  • выходы;
  • пороги, лестницы, другие участки с перепадом уровня напольного покрытия;
  • стенды с пожарным оборудованием, гидранты, средства связи;
  • пункты медицинской помощи;
  • информационные схемы.

Дополнительную подсветку с целью предотвращения паники при аварийных ситуациях создают в помещениях с общей площадью более 60 м кв. Здесь допустимо применение экономичных норм, которые в 2 раза меньше, по сравнению с приведенным выше стандартом. Подходящие источники должны поддерживать уровень 0,5 лк (соотношение минимума к максимуму прежнее – 1 к 40). Кроме уменьшения потребления электроэнергии, подразумевается возможность монтажа на большой высоте.

Следует не забывать о необходимости комбинирования освещения общих зон и эвакуационных проходов с применением соответствующих нормативов

К сведению. В производственных помещениях и других зонах повышенной опасности применяют минимальную освещенность 15 лк при неравномерности 1:10.

Дополнительные требования

Для снижения вредных и опасных факторов при пожаре следует создавать цепь электропитания аккумуляторных светодиодных светильников кабелем категорий «нг», «LS», «FR». В этих изделиях оболочки изготовлены с применением особых добавок, которые предотвращают горение, уменьшают выделение дыма, сохраняют стойкость при прямом контакте с открытым пламенем. Как и сами источники, такие линии должны сохранять функциональность в течение 1 часа.

Важно! Официальные правила по данной теме с акцентом по пожарной безопасности содержит «Технический регламент» (ФЗ № 123 от 22 июля 2008 г. с актуальными поправками в редакции от 13 июля 2015 г).

Каждый светодиодный аварийный светильник с встроенным аккумулятором в обязательном порядке оснащают кнопкой для регламентной проверки. Для удобства допустим ее перенос в определенное место, а также подключение нескольких изделий к одному выключателю. В частности, не запрещено тестирование в удаленном режиме при соответствующем оснащении.

В любом из выбранных вариантов необходимо строгое выполнение временного графика проверок. Через каждые две недели (или чаще) ответственный работник предприятия должен выполнять обход или дистанционное испытание. Результаты фиксируют в контрольном журнале с заверением подписью.

Электронный коммутационный блок для дистанционного контроля нескольких аккумуляторных светильников

Изучая эту картинку, внимательный человек заметит клавишный выключатель без фиксации положений. Такой компонент установлен специально. Усложняется проверка, так как один работник удерживает кнопку, пока второй выполняет последовательную проверку нескольких светодиодных приборов. Однако такое решение принято для исключения ошибочных намеренных и случайных действий. Автономное питание по завершении процедуры отключается автоматически, предотвращая разрядку аккумуляторных батарей.

Автономный источник питания проверяют каждые 6 месяцев. Алгоритм регламентных работ определяет производитель. При необходимости соответствующие инструкции несложно найти в интернете. В отдельных ситуациях допустимо восстановление заряда с применением внешних питающих и контрольных устройств. Восстановительные процедуры выполняют по схеме, поддерживающей оптимальные уровни тока и напряжения. Нельзя превышать предельный срок службы, указанный в сопроводительной документации. Как правило, он не превышает четырех лет.

Следующее важное требование – совместимость по электромагнитным параметрам. Все приборы до попадания в торговые сети тестируют, подтверждая отсутствие проблем соответствующим сертификатом. Недостаточно качественный светодиодный светильник с встроенным аккумулятором «выдает» на выходе импульсные помехи. При большой амплитуде они вызывают сбои в работе компьютерного, медицинского и другого подсоединенного к сети оборудования.

Официальные требования по этому параметру приведены в ГОСТе 60598-2-22-2012. Там же указаны ограничения по материалам корпуса. Они должны не воспламеняться при высокотемпературном воздействии. Допустимо частичное разрушение конструкции, но без поддержания процесса горения.

Подключение и особенности монтажных схем

Для выбора подходящего варианта уточняют отдельные параметры проекта. В простейшем случае устанавливают светильники аварийного освещения по всему пути к выходу с подключением через ручной выключатель.

Используют отдельную линию и электрощит. Если напряжение в этой цепи пропало, реле подключает аккумулятор. Аналогичное действие выполняется при выходе параметров основного питания за границы рабочего диапазона. Соответствующие компоненты автоматики устанавливают в драйвере светодиодных приборов.

Электрическая схема источника аварийного питания с индикацией заряда

Применение специализированных изделий не является обязательным. Аварийное освещение с дополнительными аккумуляторами эвакуационного пути к выходу можно создать на базе штатной системы. На стадии проектирования предполагается соответствующее перераспределение функций. Часть приборов совместно или по отдельности подключают к автономным источникам питания.

Внешние аккумуляторы можно подсоединять к стандартным недорогим осветительным приборам. В аварийном режиме работы они будут генерировать обычный световой поток, но с помощью независимого источника. Как и в стандартной схеме, создают линию для подключения к 220 V через отдельный щиток.

Дополнительным преимуществом такого решения является возможность надежного освещения выхода снаружи. Такое требования также содержится в действующих правилах. Аккумуляторная батарея в отечественных зимних условиях быстро теряет емкость при сильном морозе. Заметно уменьшается срок службы. Не выполняется нормативная длительность автономной работы (от 1 часа и более). В помещении несложно поддерживать положительную температуру, что помогает успешно решить обозначенную проблему.

Система аварийного освещения

Крупные объекты оснащают оборудованием с применением подобных схем. Сложно представить ситуацию, когда дежурный электрик делает проверку сотен автономных устройств с последовательным нажатием соответствующего количества кнопок. Сложные системы объединяют с дежурной сигнализацией, другими средствами автоматического контроля и оповещения.

Обзор рынка

В сводной таблице приведены параметры современных приборов. Цены представлены по состоянию на февраль 2019 г. Эти данные пригодятся для сравнительного анализа функций с учетом стоимости.

Светодиодные светильники с АКБ

Модель/ брендКоличество светодиодов, шт./ световой поток, лмАккумулятор (А*ч х В)Автономная работа в разных режимах (максимум/ минимум), чРазмеры в мм/ вес, в гр.Цена, в руб.
02-30led/ Ракета30/ —1,2 х 46/ 3250х50х70/ 370680-820
01-30led/ Ракета30/ —1 х 4 (2 шт.)10/ 5350 х 50 х 60/ 500715-920
1310-30LED1.8/ ML30/ 1801 х 4 (2 шт.)10/ 5350 х 50 х 60/ 500640-750
03-90 LED/ JL90/ 2702.3 х 610/ 5650 х 65 х 651360-1480

Рекомендуется уточнять комплектацию и функции отдельных моделей. Некоторые изделия могут подключаться через стандартные разъемы к сетям постоянного и переменного тока. Для соответствия реальным условиям эксплуатации проверяют защищенность по стандартам IP.

Для точной оценки нужен проект. В ходе подготовки конструкторской документации можно уточнить не только первичные затраты при покупке, но и на монтаж. Не следует забывать о дополнительных работах (строительных, отделочных). Необходимо учесть расходы на прокладку дополнительной линии питания от сети 220 V.

Видео

Датчик движения для освещения. Как подключить и настроить.

Подробное руководство о выборе датчиков движения, установке и схемах подключения к светильникам. Рассмотрены вопросы: как подключить датчик движения к прожектору, регулировка датчика движения для включения света, как выбрать светильник для подъезда с датчиком движения и т.д.

варианты-установки-датчиков-движения-в-помещениях

варианты-установки-датчиков-движения-в-помещениях

Если вы хотите создать автоматизированную систему освещения для комфортной эксплуатации и экономии электроэнергии, то лучшее решение – подключение датчика движения к лампе.

В этой статье мы предлагаем вам познакомиться с основной информацией о принципах действия датчиков, особенностях ИК- и МВ-моделей, а также способах их подключения к различным источникам света: уличным прожекторам, светодиодным светильникам, галогенным и лампам накаливания.

  • Как правильно подключить датчик движения к прожектору, если он не поставляется в комплекте?
  • Какие возможны схемы подключения?
  • На какие параметры необходимо обратить внимание при установке осветительных приборов, чтобы обеспечить стабильную работу датчика движения?

Обо всем этом вы узнаете ниже.

Датчик движения для освещения подъезда, лестничной площадки и комнат. Какие модели стоит выбирать для создания автоматизированной системы освещения?

Производители предлагают два варианта датчиков движений: микроволновый (МВ) и инфракрасный (ИК).

  • Инфракрасные датчики. Принцип действия основан на регистрации изменений ИК-излучения в контролируемом пространстве. При появлении человека в зоне действия датчика изменяется интенсивность естественного потока света. Датчик реагирует на появление «нового» ИК-света на фотоэлементе и включает освещение. Экономия электроэнергии при использовании такого прибора достигает до 95%.
  • Микроволновые датчики. Принцип действия основан на излучении и обратном приеме электромагнитных волн. При появлении постороннего объекта в запрограммированной стандартной «схеме» пространства, датчик срабатывает и включает световой прибор.

В 90% светильников для подъездов с датчиком движения выбирают ИК-модели, которые, при своей относительно бюджетной цене, срабатывают на расстояние до 5-10 метров, а также имеют ряд настроек для регулировки режимов включения. МВ-датчики более чувствительны, поэтому их выбирают для систем освещения внутри жилых помещений. Их функционал при правильной настройке позволяет реагировать даже на объекты за дверью, заранее включая свет в техническом помещении, гараже или в коридоре.

схема-установки-датчика-движения

схема-установки-датчика-движения

Если вы хотите автоматизировать действующую систему освещения путем отдельной покупки и подключения датчика движения, то необходимо учитывать ряд факторов:

  • Для уличных прожекторов рекомендуется выбирать датчики движения со степенью защиты IP65 и выше (корпус не пропускает твердые мелкие частицы и капли). Рабочий диапазон температур ДД должен составлять от -40 до +50°С, чтобы выдерживать любые перепады температур в течение года.
  • Светильник для подъезда с датчиком движения IP44 и ниже можно устанавливать, поскольку располагаться он будет «под крышей». Либо надо озаботиться, чтобы над устройствами был предусмотрен отдельный навес. Также в технической документации по эксплуатации следует обязательно соблюсти все рекомендации от производителя по установке.
  • С датчиками движения совместимы все светодиодные и галогеновые лампы, прожекторы, а также стандартные лампы накаливания. Все они способны мгновенно включаться по сигналу от ДД и не теряют свой эксплуатационный ресурс при постоянном включении/выключении. Не рекомендуется использовать люминесцентный светильник для подъезда с датчиком движения, поскольку таким осветительным приборам требуется время на включение, а ресурс их работы сокращается на 30-35%. Да и лампы накаливания выгорают в основном при включении, поэтому лучшим вариантов будет светодиодный источник света, тем более, что цены на них в последнее время не такие уж и высокие.

Регулировка датчика движения для включения света

проводится после установки устройства путем выбора настроек чувствительности (пример – исключить срабатывания датчика при приближении животных).

Зона срабатывания у каждой модели определяется техническими характеристиками, а угол обзора зависит от способа установки (для настенных и вкручиваемых в патрон ДД – 120-150°, для потолочных — 360°, для ДД с несколькими вариантами монтажа – 180-360°).

регулировка датчика движения

регулировка датчика движения

Перед установкой датчика движения важно убедиться, что в зону «видимости» не попадают объекты, способные излучать свет и тепло, а также другие «преграды», скрывающие человека при его приближении к датчику.

В таких случаях необходимо использовать переходники и подкладки, чтобы разместить ДД под нужным углом.

Как самостоятельно подключить датчик движения к прожектору?

Датчик движения выступает как элемент для замыкания или размыкания в электрической цепи. В комплектацию большинства моделей входят винтовые клеммники с маркировкой. Датчик подключается к светильникам в соответствии указанных маркировок и типа кабеля.

  • L – фазный провод (буква L на клемме ДД указывает на место его подключения)
  • N – нулевой (нейтральный) провод синего цвета

Фазный провод L напрямую подключается к соответствующей клемме. От клеммы А датчик движения подключается к прожектору или любому другому осветительному прибору. Нейтральный провод N подключается как к датчику, так и к источнику света, замыкая всю цепь.

Ниже представлена схема этого способа подключения.

Подключение датчика движения к лампе напрямую

Подключение датчика движения к лампе напрямую

Важно: Даже если допустить ошибку в подключении и перепутать провода местами на клеммнике, то опасности нет. ДД не будет работать, а об ошибке в схеме подключения будет свидетельствовать выключенный световой индикатор на корпусе.

Схема аварийного освещения с аккумулятором

Аварийные светильники с аккумуляторами – это система, предназначенная для обеспечения видимости и нормального ориентирования людей в условии возникновения неполадок в центральном освещении. В данном оборудовании в аккумуляторе может быть использовано два вида батарей:

  • Литиевые;
  • Никель-металлгидридные.

Независимо от того, какая батарея установлена, аварийные светильники будут функционировать продолжительное время, обеспечивая аварийное освещение. Среднее время работы оборудования – 2-3 часа, однако, некоторые модели могут функционировать в течение 7 часов.

Использование отдельных осветительных приборов для штатного и нештатного режимов

В большинстве случаев, системы применяются для обустройства нештатного освещения довольно низкой мощности. Эксплуатация отдельного осветительного оборудования во время нормальных условий и в случае непредвиденного сбоя в работе энергосети поможет улучшить уже имеющуюся конструкцию без серьезных ее нарушений.

Схема подключения аварийного освещения, в которой были использованы главный и дополнительный источник питания, а также раздельные оптические устройства для работы в штатном и аварийном режиме содержит следующие компоненты:

  • две лампочки, одна из них работает в нормальном режиме, вторая включается во время возникновения нештатной ситуации;
  • аккумуляторная батарея для питания осветительного элемента при отключении электроэнергии;
  • предохранительный блок;
  • контакты реле;
  • выпрямитель.

В нормальном режиме работы основная лампочка соединяется с электросетью посредством определенного контакта реле. Аккумулятор подсоединяется к выпрямителю и находится в состоянии перманентной подзарядки.

Раздельные источники для основного и аварийного света

Во время отключения электроэнергии происходит автоматическое замыкание второго контакта реле, после чего энергия от аккумулятора подается на аварийный осветительный элемент.
Данная схема светильника аварийного освещения предполагает прокладку двух сетей энергоподачи. Одна из них обеспечивает электричеством основной осветительный элемент, а вторая работает исключительно в нештатной ситуации. В качестве главного элемента можно использовать лампочки какого-либо вида. Для нештатного режима применяются лампочки накаливания гораздо меньшей выходной мощности, нежели основной элемент.

Как собрать самому

Есть много различных схем таких светильников, но если нет очень высоких требований, можно попробовать несложную схему, которую легко собрать своими руками. Она разработана компанией YMYA electronics и пользуется популярностью из-за своей простоты и надежности.

Принцип работы очень прост: как только пропадает 220 В, автоматически зажигаются 12 ярких светодиодов, которые так же автоматически гаснут при появлении напряжения сети.

Эта схема состоит из двух частей: схемы зарядки батареи и управления лампами типа LED. Зарядное устройство состоит из понижающего трансформатора 220/9 В, диодного моста, сглаживающего конденсатора, регулирующего элемента на микросхеме LM317.

Ограничение зарядного тока осуществляется при помощи резистора 16 Ом, 5 ватт, потенциометром 2,2 Ком регулируется ток зарядки, а стабилитрон в цепи базы транзистора ВС547 служит для автоматического отключения заряда батареи.

Вторая часть схемы состоит из транзистора BD140, в коллекторной цепи которого установлена матрица из 12 светодиодов. Резисторы 100 Ом – токоограничивающие. Так как потребляемый ток матрицы может доходить до 1,5 А, транзистор обязательно должен стоять на радиаторе во избежание перегрева и выхода из строя.

Если это слишком сложно, можно взять другую схему, которую собрать своими руками еще проще:

Напряжение 220 вольт подключается к гнезду J1, выпрямляется диодным мостом, собранном на диодах 1N 4004, и поступает на контакты электромагнитного реле. При пропадании напряжения сети реле обесточивается. Нормально закрытые контакты подключают батарею, аварийное освещение включается в работу.

При желании можно подключить не 220 В, а 5 В через контакты J2, J3: теперь схема будет отслеживать наличие этого напряжения. Гнездо J4 используется для подключения зуммера, звонка или любого другого устройства, которое будет оповещать о том, что произошла авария.

Как видим, такие фонари – это не настолько дефицитно или сложно, чтобы отказываться от исполнения требований техники безопасности. Если купить их в нужном количестве дорого, всегда есть альтернативный вариант – собрать своими руками, что будет значительно дешевле.

LED лампы на батарейках

На просторах интернет-магазинов встречаются лампы, с виду обычные LED, но в них присутствует аккумуляторный накопитель, позволяющий работать какое-то время при отсутствии электричества. Данное устройство имеет стандартный цоколь E27, и по размерам поместится в большинство светильников.

С помощью переключателя можно выбрать режим работы лампы, в качестве накопительного — аварийного, или же обычный режим. Используя LED лампочки на аккумуляторах можно сделать резервное освещение в квартире либо жилом доме совсем без усилий. Недостаток аккумуляторных LED ламп в высокой стоимости, около 500 рублей, однако если учитывать, что для всех комнат затраты выйдут около 3 тыс. рублей, можно сказать, что это не так уж и дорого.

Напоследок рекомендуем вам просмотреть еще одну идею организации резервного освещения в частном доме либо гараже на базе солнечных батарей:

О том, как подключить солнечные батареи своими руками, мы также рассказывали в отдельной статье!

Схема аварийного освещения с АВР

Независимый тип в этой большой группе образуют системы, которые дополнительно оснащаются прибором самостоятельного запуска резерва.

Модули аварийного освещения схемы, которая использует прибор самостоятельного запуска резерва, представлены здесь следующими компонентами:

  • первый ввод энергии
  • второй ввод
  • третий ввод
  • группа автоматических выключателей
  • четыре контакта реле
  • реле, контролирующее напряжение в электросети
  • две шины питания для разных режимов работы

Если электричество подается на первый ввод, то оно проходит через один контакт, один автоматический выключатель и через шину для нормального режима работы. Если произошел сбой в подаче электроэнергии на первый ввод, ранее используемый контакт размыкается, одновременно с этим замыкается контакт для аварийно работы, после чего электроэнергия поступает на потребители со второго ввода.

Если электроэнергия не поступает на оба первых ввода, система сигнализирует об этом и в автоматическом режиме запускается топливный генератор, после чего происходит замыкание третьего аварийного контакта. После чего электроэнергия поступает на третий ввод. В случае необходимости два реле стабилизируют напряжения на вводе и продолжают контролировать его.

Данные устройства не только оценивают значение напряжения, но и его динамику. То есть система контролирует скачки и провалы в поступлении электроэнергии. Благодаря этому можно не бояться пропаданий света или мигания ламп.

Аварийное освещение, схема аварийного освещения с АВР

Осветительный элемент подключается к шине для нормальной работы посредством автоматических защитных устройств, а к шине для нештатной ситуации через защитные устройства, в то время как сама шина подключает к первой посредством четвертого контакта реле.

Второй ввод электроэнергии может быть представлен отдельной фазой сети или просто независимой системой питания. Очень часто для таких целей используют инверторы, которые трансформируют заряд аккумулятора в переменный ток. Данные системы очень часто устанавливаются на стадионах и других местах скопления людей.

Основным плюсом данных систем является длительный срок эксплуатации осветительных элементов, поскольку они не подвержены разрушительному воздействию скачков напряжения, а также важна надежная резервация энергии.

Где необходимо монтировать аварийное освещение, и какие требования к нему предъявляются

Прежде чем говорить о схемах и сферах применения, давайте разберемся с вопросами, где это аварийное освещение вообще должно быть. Кроме того, обязательно следует разобраться с вопросом норм, предъявляемых к аварийному освещению. Все это детально прописано в СНиП 23-05-95, а в нашей статье мы лишь постараемся, простым языком объяснить все эти требования.

Помещения, в которых обязательно должно быть аварийное освещение

Аварийное освещение подразделяется на два основных типа – это эвакуационное и освещение безопасности. Первое должно обеспечить безопасное передвижение людей в экстренных ситуациях, а второе — минимальный уровень освещенности в местах управления критической инфраструктурой.

Требования к аварийному освещению

Теперь поговорим о требованиях, которые нормативные акты предъявляют к аварийному освещению. Причем, в зависимости от типа аварийного освещения, эти требования достаточно разительно отличаются.

  • Начнем наш разговор с освещения безопасности. Как говорит инструкция, оно должно обеспечивать наименьшую освещенность в размере 5% от нормальной минимальной освещенности. Например, у нас имеется помещение, в котором минимальная норма освещенности составляет 200лк. Соответственно минимальная норма освещения безопасности должна быть не меньше 10лк.

Обратите внимание! Во всех случаях минимальная норма освещения безопасности должна быть не ниже 2лк внутри зданий. На территории предприятия эта норма составляет 1 лк.

  • А вот с эвакуационным освещением все немного сложнее. И это связано не с нормой минимальной освещенности, которая для помещений составляет 0,5лк, а для площадок вне помещений 0,2лк, а с правилами размещения самих фонарей.
  • Фонари эвакуационного освещения должны быть расположены через каждые 25 метров на пути эвакуации. Кроме того, они в обязательном порядке должны быть на каждом повороте и перед каждой дверью.
  • Но дело в том, что нормы запрещают перепад между наиболее и наименее освещенными участками больше чем 1к 40. Это требование зачастую обуславливает применение светильников с максимально рассеянным светом, а также уменьшение расстояний между светильниками.

  • Отдельно стоит отметить и лампы, которые следует применять для систем аварийного освещения. Дело в том, что нормативные документы запрещают применение натриевых, ксеноновых, ДРЛ и металлогалогенных ламп, которые достаточно долго разгораются и могут гаснуть в процессе работы.

Фотолюминесцентная эвакуационная система

На многих предприятиях все чаще применяется система фотолюминесцентной подсветки. Для этого используются панели, указатели, планы и другие элементы, обработанные люминофором, либо люминофор внедряется в сам материал, из которого изготовлены указательные элементы.

Люминофор способен в течение дня накапливать в себе свет, а в темное время отдает накопленную энергию в виде зеленого свечения. Однако минус такой подсветки в том, что ночью она будет светить всегда и ее невозможно отключить.

Современные технологии призваны облегчить нашу жизнь, и благодаря их развитию такое событие, как отключение электричества, не способно сделать нас беззащитными, как слепых котят, ведь сделать аварийное освещение своими руками у себя дома на даче и в гараже сможет каждый.

Ремонт светильника аварийного освещения SKAT LT

Принесли светильник (рис.1), попросили посмотреть, можно ли что-нибудь сделать, чтобы заработал. Лампа в корпусе одна, на переключения выключателя не реагирует, при питании от сети тоже никакой реакции. Инструкции нет, схемы нет… Ладно, лезу в сеть искать хоть какую-то информацию… Ага, есть фото и описание – эта модель с тонкими люминесцентными лампами Т5 имеет маркировку 886, в паспорте к светильнику написано, что он предназначен для обеспечения эвакуационного и резервного освещения в случае прекращения подачи электроэнергии и способен поддерживать автономный режим от внутренней герметичной аккумуляторной батареи 6 В 1,6 А/ч (это почти цитата). Получается, что от сети 220 В он не работает, сеть только подзаряжает аккумулятор и, надо полагать, что если аккумулятор полностью разрядится, то никакого освещения не будет. Подключаю светильник к сети, оставляю на зарядке на вечер и ночь.


Рис.1

Утром следующего дня красный светодиод «CHARGE» («ЗАРЯД) на панели переключателя начал светиться. Но слабо – если не присматриваться, то почти и не заметно. Времени с начала зарядки прошло уже более 10 часов и он, теоретически, должен гореть намного ярче. Хотя, может быть, в светильнике есть какая-нибудь система отключения зарядного тока с индикацией – нет заряда, нет свечения. Пощёлкал переключателем влево, вправо, не горит. Отключаю от сети, щёлкаю – не горит.

Начинаю разбирать светильник. Сначала снимаю световой рассеиватель, чтобы осмотреть лампу. Нити накаливания целые, люминофор на обоих концах лампы имеет небольшие кольцевые потемнения (рис.2).


Рис.2

Ставлю рассеиватель на место, снимаю заднюю крышку (рис.3) и вынимаю «внутренности» (рис.4).


Рис.3


Рис.4

Всю разводку (рис.5) и все места пайки проводников к печатной плате зарисовываю (рис.6) и подписываю маркером прямо на плате – видно на рисунке 4.


Рис.5


Рис.6

Так как на плате стоит трансформатор с ферритовым сердечником, то схема, скорее всего, представляет собой преобразователь низковольтного постоянного напряжения в высоковольтное переменное. Никаких стартеров и дросселей в цепях питании ламп не видно, похоже, что лампы просто «поджигаются» при высоковольтном «пробое» газа.

На плате видны места вспучивания «зелёнки», но медная фольга под ней не деформированная, а это значит, что зелёный лак отвалился не от перегрева, а просто так. Видна свежая пайка как раз в местах подсоединения проводников, идущих к лампам, но, судя по отверстиям на плате, проводники были припаяны правильно. Так же заметен вздувшийся электролитический конденсатор (рис.7). Сразу меняю, номинала 220 мкФ/16 В не нашёл, поставил на 330 мкФ/25 В и к его выводам со стороны печати припаял керамический 0,1 мкФ. Конденсатор стоит около трансформатора и почти наверняка связан с импульсными токами (иначе бы не «вспух») и установка дополнительного керамического конденсатора, имеющего меньшее реактивное сопротивление для импульсных токов, облегчит ему работу в будущем.


Рис.7

Замер напряжения на клеммах аккумулятора не порадовал – потенциал был чуть менее 3 В. Отпаял аккумулятор, подключил проводники к лабораторному блоку питания с выставленным напряжением 6,5 В. Пощёлкал переключателем, никакой реакции. Включил осциллограф, потыкал щупом в разные места платы и, конечно же, на ножки низковольтных обмоток трансформатора – нигде никакой генерации нет. Значит, надо разбираться с целостностью деталей. Всё повыключал и отпаял от печатной платы все провода (рис.8 и рис.9) – они всё равно отвалятся при многократном переворачивании платы.


Рис.8


Рис.9

На рисунке 10 видна маркировка «MD886». Цифры совпадают с маркировкой светильника, буквы – нет. Ну, не важно.


Рис.10

Прозвонка тестером всех полупроводниковых деталей выявила «дохлый» транзистор (короткое замыкание между базой и коллектором). К транзистору прикручен радиатор и логично предположить, что он и есть силовой коммутирующий элемент в преобразователе (транзистор, а не радиатор). Маркировка не знакомая, но поисковики на запрос «транзистор 882» выдавали информацию по 2SD882. Ну, ладно, пусть будет так.

Дома такого транзистора не нашёл, почитал даташиты и поставил наш родной, советский КТ972 (рис.11). Понимаю, что замена не совсем равноценная (наш — составной), тем не менее, схема после возвращения всех проводов на место, заработала. Лампа засветилась, но не очень ярко. Хотя, может быть, так и должна светить 6-ти ваттная люминесцентная трубка при таком способе её зажигании. Изменение напряжения питания в пределах от 7 В до 5 В на яркость особого влияния не оказывало, но, наверное, менялась частота преобразователя, так как появлялся негромкий свист в трансформаторе. Транзистор тёплый, но не горячий.


Рис.11

Пока прозванивал детали «на целостность», попутно срисовывал их соединение (рис.12). Потом перерисовал всё это в нормальном «читабельном» виде и получилась схема (рис.13) (указанные напряжения измерены и проставлены во время очередной зарядки аккумулятора уже после ремонта светильника).


Рис.12


Рис.13

Схему можно условно разделить на две части – одна, высоковольтная, отвечает за заряд аккумулятора при подключении светильника к сети 220 В, другая – преобразовательная, питается только от аккумулятора и работает только тогда, когда на светильник не подаётся 220 В.

На рисунке 13 видно, что переменное сетевое напряжение проходит через токоограничительный конденсатор С1 и поступает на диодный выпрямительный мост VD1…VD4. Пульсации выпрямленного напряжения сглаживаются конденсатором С2. Уровень этого напряжения в основном зависит от того, насколько заряжена аккумуляторная батарея Bat1. Так как её зарядный ток проходит через диод VD6, то после того, как суммарное напряжение на Bat1 и на диоде VD6 приблизится к порогу открывания стабилитрона VD5, токи начнут перераспределяться – зарядный будет уменьшаться, а ток через стабилитрон – увеличиваться. Так происходит защита от перезаряда аккумулятора. К цепям с выпрямленным напряжением подключены ещё индикатор режима «CHARGE» («ЗАРЯД) на светодиоде HL1 (с токоограничительным резистором R3) и резисторный делитель R5R6, напряжение с которого поступает на базу транзистора VT1 тем самым «открывая» его. Открытый транзистор VT1 в свою очередь «запирает» транзистор VT2, «закорачивая» собой база-эмиттерный переход VT2, тем самым запрещая работу блокинг-генератора преобразователя. Если же напряжение в сети 220 В пропадёт, то конденсатор С2 разрядится, транзистор VT1 «закроется», преобразователь заработает, на высоковольной обмотке трансформатора Tr1 появится напряжение и лампы начнут светиться. Конечно, это произойдёт, если движковый переключатель S2 (2 направления, 3 положения) будет находиться в одном из крайних положений, т.е. в нормальном рабочем дежурном режиме. Для проверки работоспособности светильника подключенного к сети в схеме имеется кнопка S1 – нажатие на неё принудительно «закрывает» транзистор VT1 и запускает преобразователь.

По остальным элементам схемы. Резистор R1 разряжает через себя конденсатор С1 после отключения светильника от сети 220 В. R2 – токоограничительный для стабилитрона VD5. Маркировки на стабилитроне не было, но он, скорее всего, в данной схеме должен быть с большой рассеиваемой мощностью, например, 5 Вт. Цепочка из резистора R4 и светодиода HL2 «BATTERY» – индикация наличия напряжения питания преобразователя – включается при любом крайнем положении переключателя S2. Этот же переключатель выбирает режим зажигания одной или двух ламп и в случае работы с двумя лампами увеличивает базовый ток транзистора VT2, подключая резистор R7 параллельно резистору R8. Ток импульсов, приходящих на базу VT2 с обмотки трансформатора Tr1 ограничивается резистором R9. Ёмкостью конденсатора С4 выбирается рабочая частота преобразователя – при работе с одной лампой (после установки транзистора КТ972) лучше оказалось увеличить ёмкость С4 в полтора раза – уменьшился потребляемый от аккумулятора ток и одновременно увеличилась яркость свечения лампы). Конденсатор С5 нужен для работы блокинг-генератора (если можно так сказать, то стоит для «закорачивания» на «минус» импульсов на верхнем выводе базовой обмотки Tr1 и, соответственно, получения на базе VT2 импульсов оптимальных по уровню).

Пока нет нового нормального аккумулятора, можно «посмотреть» старый – понятно, что он не держит ёмкость, но нужно оценить степень его неработоспособности и попытаться «привести в чувства» несколькими последовательными циклами заряда и разряда.

Аккумулятор имеет размеры 100х70х47 мм и не имеет никакой маркировки, кроме букв и цифр на верхней крышке (рис.14). Поисковики говорят, что он скорее всего свинцово-кислотный, герметичный, необслуживаемый, с ёмкостью 4,5 А/ч (а в паспорте к светильнику говорится, что применяется аккумулятор ёмкостью 1,6 А/ч).


Рис.14

На рисунке 14 видно, что кто-то уже пытался поддеть крышечку, закрывающую доступ к внутренностям – процарапаны две щели. Вставляю тонкую широкую текстолитовую отвёртку в ту щель, что с правого края и с некоторым усилием вынимаю крышку (рис.15). Видны три резиновых герметизирующих колпачка, надетых на горлышки банок. А раз их три, то, надо полагать, каждая банка рассчитана на напряжение 2 В.


Рис.15

Пинцетом снимаю колпачки (рис.16).


Рис.16

Затем щуп положительного вывода вольтметра подключаю к плюсовой клемме аккумулятора, а «крокодилом» на минусовом щупе зажимаю медицинскую иглу. Осторожно, без усилий, опускаю иглу в банку и касаюсь её внутренностей в разных местах (рис.17). Задача — коснуться твёрдых токопроводящих поверхностей. Максимальное напряжение, которое показал тестер, было около 0,5 В. Затем при помощи второй иглы так же проверяю вторую банку (рис.18) – тестер также показывает 0,5 В.


Рис.17


Рис.18

И только при проверке третьей банки, наконец-то, появилось нормальное напряжение в 2 В. Итого, в сумме и получаются те самые 3 В, что были измерены на этапе осмотра внутренностей светильника.

Для «побаночного» заряда аккумулятора была собрана схема по рисунку 19. Здесь амперметр показывает протекающий в цепи ток (с учётом тока через лампочку La1), вольтметр – напряжение на заряжаемой банке. На блоке питания выставлялось такое напряжение, чтобы в начале заряда ток через банку не превышал 150 мА. Напряжение на банке контролировалось мультиметром ВР-11А. При достижении значения 2,3 В переключатель S1 размыкался, заряд прекращалась и начинался разряд до напряжения 1,8 В. Всего было проведено четыре таких цикла и после этого аккумулятор был заряжен «целиком». Светильник на нём проработал чуть более пяти минут – время, конечно, не впечатляющее, но, учитывая, что до этого аккумулятор совсем не работал, то результат тренировки виден. На рисунке 20 показано измерение напряжения на клеммах после очередного заряда.


Рис.19


Рис.20

После нескольких включений светильника и зарядки, лампа начала «расходиться» и светить всё ярче и ярче (рис.21). Ток потребления от аккумулятора не контролировал, но судя по тому, что транзистор греется так же, как и грелся, ток если и повысился, то на транзисторе это не сказывается — наверное, это правильно и хорошо.


Рис.21

На рисунке 22 – индикация при заряде в положении переключателя «OFF» (Выкл.), на рисунке 23 – в положении переключателя «Одна лампа». При отключении светильника от сети начинает светиться одна трубка и остаётся гореть только зелёный светодиод «BATTERY» (рис.24).


Рис.22


Рис.23


Рис.24

Понятно, что описанный случай ремонта можно отнести к «дилетантскому», но, как оказалось, электрическая схема достаточно простая и понятная, деталей мало, самое сложное, что может быть – это ремонт трансформатора. Хотя, наверное, тоже не проблема – выпаять, разобрать сердечник, предварительно нагрев его, посчитать витки и запомнить направление намотки, намотать новые, собрать всё и впаять.

Аварийное освещение своими руками

Электричество так плотно вошло в наш быт, что при отключении света жизнь как будто замирает, дела не делаются, а в доме царит мрак. Чтобы перебои в энергоснабжении не стали диктовать вам свои правила жизни, мы расскажем, как сделать для дома, гаража, дачи и даже палатки аварийное освещение своими руками . Конечно же, для несведущих в электрике людей эта затея может показаться не только непостижимой, но и рискованной, но, как известно, все гениальное – просто!

Аварийное освещение своими руками

Несомненно, бросаться в омут электричества с головой без минимальных знаний, по меньшей мере, абсурдно. Поэтому для начала следует узнать азы и все тонкости аварийного освещении.

Особенности аварийной подсветки

Экстренная подсветка является независимой от основной сети и призвана создавать достаточную визуализацию для свободного ориентирования людей в темноте при отключении основного освещения.

Как сделать аварийное освещение

Согласно регламентам ПУЭ экстренное освещение должно иметь белый свет и минимально допустимую освещенность в 1 лк.

Для обеспечения аварийной подсветки можно использовать любые источники света: лампы накаливания, люминесцентные лампы.

Как сделать аварийное освещение своими руками

Но наиболее востребованными сегодня являются 12-вольтные светодиоды LED . Они дают достаточно света и к тому же значительно экономят запасы энергии аккумулятора, что позволяет использовать такое освещение дольше.

Собираясь установить дома резервные источники света, следует также взять на заметку следующие правила:

В одном помещении следует устанавливать как минимум два светильника, чтобы в случае неисправности одного, второй взял на себя задачу по освещению.

Устанавливать светильники следует так, чтобы они смогли обеспечивать достаточную для ориентирования в темном помещении визуализацию. Лучше всего монтировать лампы в центре помещения, а также в местах повышенной травмоопасности и важности: лестницы, дверные проемы, проходы, повороты, пульт управления освещением, выход.

Как сделать аварийное освещение от аккумулятора

Следует хорошо продумать схему аварийной подсветки, а также метод её управления: ручной или дистанционный. В случае с ручным методом управления, нужно обеспечить простой доступ к включателю, чтобы в темноте с легкостью найти источник питания освещения.

Аварийное освещение

Как сделать аварийное освещение

Создать самостоятельно аварийную подсветку от аккумулятора в домашних условиях в принципе сможет любой электрик-любитель, если под рукой будет подробная инструкция.

Для начала нужно подобрать необходимые светильники, напряжение в которых не будет превышать 12 вольт. По сути, это основное требование, которое предъявляется к аварийным источникам света.

В каждой системе экстренной подсветки обязательно должны присутствовать источники автономного питания (аккумуляторные батареи, генераторы), осветительные приборы и другие элементы, например, реле, блок питания, устройство дистанционного управления.

Резервное и центральное освещение устанавливаются параллельно друг другу. Совмещать их нельзя!

Также и укладка линий аварийной и основной системы должна идти отдельно. Это позволит значительно упростить проверку функциональности систем освещения.

В случае с автоматической системой переключения основного освещения на резервное, обе сети подсоединяются к переключателю.

Здесь крайне важно добиться своевременного переключения, именно поэтому сборку такой системы освещения лучше доверить профессионалам.

На сегодняшний день все чаще системы резервного освещения оснащаются устройствами дистанционного управления, такими, как, например, TELEMANDO, который идеально подходит для 12-вольтных светильников типа LED . Этот аппарат способствует экономичному расходу заряда резервного источника питания, а также помогает ликвидировать неполадки в сети, если таковые имеются.

Кроме того в самом устройстве предусмотрены встроенные аккумуляторные батареи и двухпозиционный возвратный переключатель. Обычно устройство дистанционного управления монтируется в распределительных щитках на DIN-реях.

Аварийное освещение своими руками, схема

В мире электрики можно отыскать множество схем резервной подсветки разного типа сложности. Давайте же рассмотрим стандартную схему, в которой будут использованы основной и резервный источники питания и разделительные устройства переключения системы со штатного режима в экстренный.

Аварийное освещение схема

Для данной сборки такой системы освещения потребуются следующие элементы:

  1. Лампочки (2 шт.), одна из которых будет работать в обычном режиме, а другая будет включаться при аварийных ситуациях.
  2. Аккумулятор для обеспечения питания лампы в нештатном режиме работы.
  3. Блок предохранителей.
  4. Контакты реле.
  5. Выпрямитель электрического тока.

В штатном режиме главная лампа соединена с сетью с помощью релейного контакта. Блок резервного питания соединяется с выпрямителем электрического тока и пребывает в состоянии беспрерывной подзарядки.

Когда происходит отключение электричества, второй контакт реле автоматически замыкается, и тогда аккумуляторная батарея начинает подавать энергию на резервный источник света.

Такая схема аварийной подсветки предполагает прокладку двух параллельных энергосетей, где одна осуществляет работу основного осветительного элемента, а вторая – исключительно резерва. Для основного освещения можно брать лампы любого вида, когда как для аварийной подсветки следует выбирать маломощные осветительные источники.

Более простая система аварийного освещения представлена на видео:

Аварийное освещение своими руками

Появление светодиодов значительно упростило сборку систем аварийного освещения. Именно на базе этих фонариков и пишутся многочисленные простенькие схемы. Вот как раз такую систему на основе аккумулятора и светодиодной ленты мы и попробуем собрать своими руками. Управление такой подсветки – ручное, соответственно и схема сборки самая примитивная.

  • 12-вольтный портативный аккумулятор 4 Ач, или большей ёмкости, если хотите продлить время работы освещения.
  • Светодиодная лента – 2 м. Можно взять отрезок ленты и короче, так расход энергии аккумулятора будет меньше, а резервный свет будет работать дольше. В принципе, вместо ленты можно взять любые другие осветительные источники 12 V , в частности светодиодные модули.

Как сделать аварийное освещение от аккумулятора

  • Также нам потребуются контактные провода с разъёмами для соединения аккумулятора с диодами.

Аварийное освещение своими руками

Как сделать аварийное освещение своими руками

Первое, что нам нужно сделать, это подсоединить контактные провода к светодиодной ленте. Если вы используете всю ленту с отходящими от нее родными проводками, то просто соедините контактный провод с проводами ленты цвет к цвету. Также провод с разъемом подсоедините к аккумулятору по полярностям.

Если же вы используете отрезанный кусок ленты, то контактные провода следует припаять к контактам ленты: красный к контакту «+» и черный к контакту «-».

После того как контактные провода будут подключены, подсоединяем разъем ленты к разъему аккумулятора. Светодиоды дают достаточно освещенности. Такую систему можно использовать не только, как аварийную подсветку, но и как осветитель в природных условиях (походы, рыбалка, дача).

Аварийное освещение от аккумулятора своими руками

LED лампы аккумуляторные

При отключении света первое спасение от мрака в доме – это фонарик или свечка. Света от них мало, да и работают такие методы крайне непродолжительно, если, конечно, у вас нет обширных запасов свечей и батареек.

Сегодня же интернет-магазины буквально пестрят разными моделями светодиодных светильников с аккумуляторными батареями, которые способны давать достаточно света на протяжении нескольких часов беспрерывной работы. Такие светильники имеют несколько режимов работы, они мобильны, долговечны и доступны по стоимости.

Лампы для аварийного освещения

Лампочки на аккумуляторах

Также набирают популярность сегодня и аккумуляторные лампы, которые выглядят, как обычные лампочки с цоколем. Такие источники света имеют 2 режима работы: накопительный и аварийный и оснащены удобным переключателем. В обычном режиме лампочка светит штатно, но при отключении света можно перевести светильник в режим резерва с помощью пульта управления. Стоимость одной такой лампочки доходит до 500 рублей. И это самый простой вариант аварийного освещения на сегодняшний день.

Фотолюминесцентная эвакуационная система

На многих предприятиях все чаще применяется система фотолюминесцентной подсветки. Для этого используются панели, указатели, планы и другие элементы, обработанные люминофором, либо люминофор внедряется в сам материал, из которого изготовлены указательные элементы.

Люминофор способен в течение дня накапливать в себе свет, а в темное время отдает накопленную энергию в виде зеленого свечения. Однако минус такой подсветки в том, что ночью она будет светить всегда и ее невозможно отключить.

Современные технологии призваны облегчить нашу жизнь, и благодаря их развитию такое событие, как отключение электричества, не способно сделать нас беззащитными, как слепых котят, ведь сделать аварийное освещение своими руками у себя дома на даче и в гараже сможет каждый.

голоса
Рейтинг статьи
Читайте так же:
Розетка под кабель телевизора
Ссылка на основную публикацию
Adblock
detector