Ele-prof.ru

Электро отопление
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Подключения потенциометра к преобразователю частоты

Подключения потенциометра к преобразователю частоты

Потенциометр для частотного преобразователя

Управление преобразователем частоты насоса для изменения производительности производят потенциометром, который встроен в лицевую панель управляющего блока.

Интересной особенностью использования потенциометра для управления скоростью вращения двигателя является режим, пользователь не знает, как выбрать сопротивление по номиналу. Многие частотные аналоговые выходы преобразователя не чувствительны к значению потенциометра, подключенного к преобразователю частоты. Его значение находится в интервале от 1 до 10 кОм. При значении основного напряжения в 5 вольт ток потенциометра в интервале от 0,5 до 5 миллиампер.

При этом использовать нужный резистор надо по расстоянию от частотного преобразователя. При применении потенциометра со значительным размером сопротивления по проводу пойдет небольшой ток, который сравним с помехами. Это подсоединение в одном управляющем блоке вместе с преобразователем частоты. В других случаях желательно подключать потенциометр серии с уменьшенным сопротивлением. Не нужно забывать, что провода сигналов передачи данных от потенциометра нужно проводить вдали от проводов питания, чтобы исключить воздействие помех от волн.

Использование потенциометра в качестве источника определения скорости двигателя создается встроенным регулятором ПИД с программой – регулятором частотного преобразователя. Датчик давления подключается с другого аналогового дискретного входа преобразователя частоты.

Применяется режим ограничения многих частотных преобразователей систем управления насосом – можно регулировать давление потенциометра, то нужно использовать преобразователь частоты с 2-мя аналоговыми дискретными входами.

Потенциометр для частотного преобразователя

Схема подключения аналоговых сигналов управления преобразователя частоты Lenze серии ESV.

PR1 – потенциометр задания скорости вращения двигателя сопротивлением от 1 до 10 кОм, PD1 – датчик давления с сигналом выхода от 4 до 20 миллиампер. Соединение между контактами 1 и 4 создает данные преобразователя частоты Lenze, провод между контактами 1 и 13А – запуск программируемого регулятора давления.

Чтобы использовать управляемость частоты насосной установки нужно сделать конфигурацию программы аналоговые выходы преобразователя частоты серии своей цели. Эта схема конфигурации значений параметров частотников программирования:

№ параметраНазваниеЗначениеПримеч.
Р100Источник пусковой команды1Управление из контактной коробки
Р101Источник по умолчанию10-10 В тока (сигнал, подающийся от потенциометра для такого подключения)
Р102Наименьшая скорость20.0Приспособить по ограничениям*
Р103Наибольшая скорость50.0
Р104Время ускорения5.0Приспособить к процессу
Р105Время замедления5.0
Р110Метод запуска1Запуск при подключении сети
Р121Входная опция ТВ-13А1Запущен режим регулировки с определением значения дискретного входа 0 до 10 вольт
Р200Система регулировки ПИД1Подключен нагревателем
Р201Обратная связь регулятораДатчик давления включен к входному каналу от 4 до 20 миллиампер
Р207Прямая составная часть регулятора ПИД5.0Подготовить к процессу
Р208Суммирующая часть регулятора ПИД0.0
Р209Дифференциальная часть регулятора ПИД0.0

Когда установлена небольшая скорость двигателя, то на насосе нет давления, он расходует энергию. Если скорость двигателя выше номинала, то начнется перегрев.

Другие значения параметров задания скорости установлены по умолчанию, изменяются мастером для оптимизации с двигателем и приводом.

Читайте так же:
Блок питания для вакуумного выключателя

Схема не показывает все используемые элементы управления насосами. На ней не показаны контакторы для непосредственного запуска насоса, если неисправен преобразователь, регулятор рабочих режимов передачи с ручного на автоматический, работа преобразователя частоты, присутствие сети.

Определение частоты наружным потенциометром

При применении способа задания частоты наружным потенциометром используется схема подключения работы преобразователя:

Потенциометр для частотного преобразователя

Сопротивление потенциометра рекомендовано более 5 кОм. Это значение выбрано из расчета способности нагрузки источника питания преобразователя частоты.

Потенциометр подключается между контактами +10 вольт и АСМ, управляющий сигнал соединяется с входом AVI.

Серии потенциометров используют различные схемы подключения, конкретную схему уточняют по инструкции.

Настраивание значений параметров управления частотой наружным потенциометром

VFD-B
Pr.02-00 = 01 — сигнал (0…+10) В на входе AVI;
или
Pr.02-00 = 03 — сигнал (-10…+10) В на входе AUI;

VFD-F
Pr.02-00 = 01 — сигнал (0…+10) (0…5В) В на входе AVI;

VFD-G
Pr.02-00 = 01: Аналоговый вход AI1 (10 бит);
или
Pr.02-00 = 02: Аналоговый вход AI2 (10 бит);

VFD-E, EL, L
Pr.02-00 = 01: Сигнал (0 … +10)В на входе AVI;

VFD-C2000, VE

Pr.00-20 = 02 Аналоговый вход (Pr. 03-00);
необходимо сделать настройку опции аналогового дискретного входа
Pr.03-00 = 01 Определение частоты.

Потенциометр (IP66, 10кОм) для регулирования механизма по оборотам двигателя

Характеристика потенциометра Moeller M22-R10K

  • Значение сопротивления: 10 килоом
  • Допуск сопротивления: +- 10%.
  • Наибольшая мощность: 0,5 ватт.
  • Класс защиты: IP66.
  • Наружное кольцо из титана.
  • Винтовые зажимы (3 штуки).

Сфера использования

Сопротивление используется вместе со многими преобразователями частоты и механизмами тока постоянной величины наружным определителем скорости мотора, регулятором мощности.

Потенциометр оснащен шкалой на 10 делений, с ценой каждого 0,5. Это создает удобство для определения частоты вращения в механизмах в цифровом виде.

Размеры для установки потенциометра дают возможность ставить по отверстиям обычных переключателей с кнопками.

Подключение потенциометра частоты насосной установки делается винтовыми зажимами, без пайки.

Потенциометр в помощь к настройке преобразователя частоты

Командный сигнал задающей частоты часто приходит режим от разных источников, виды для разных приводов указаны в значениях параметра 02-00 – источник определения частоты выхода в сериях VFD-EL, VFD-E, VFD-F, VFD-B, а значение параметра 00-20 – VFD-VE, VFD-C2000 нужно подвергать настройке параметр 03-00.

В различных конструкциях преобразователей частоты размер параметра различается, потому что у них внутренний потенциометр, многие варианты потенциометров определяют импульсы сигналов определения частоты. Конкретные значения берутся в инструкции.

Частота задается по вариантам:

  • Стрелками на моделях с внутренней управляющей панели.
  • Клавишами up, down с наружных терминалов на моделях.
  • С внутреннего потенциометра панели управления.
  • Аналоговым сигналом, с наружного потенциометра.
  • На всех видах с последовательного интерфейса RS
  • Сигналами импульсов по направлению, без направления на VFD-VE, C2000.
  • Командными сигналами по CAN open последовательному интерфейсу вида VFD C
Читайте так же:
Кратность тока срабатывания автоматического выключателя

Схемы соединений различаются для различных моделей потенциометров, определенная схема размещена в документах к прибору.

Если задавать частоту наружным потенциометром, то его нужно выбирать не менее 5 кОм, он не должен быть больше нагрузки сети питания +10 В, наибольшая сила тока 20 мА, у некоторых видов приборов может быть меньше.

Настройка преобразователя частоты с программированием параметров

При нажатии клавиши Prog высвечивается группа значений. Стрелками задаем необходимый номер, нажимаем на ВВОД, появляется номер параметра. Это значение меняем клавишами, возвращаемся к группе параметров клавишей MODE.

Для подтверждения выбора значения – клавиша Prog, на дисплее появляется значение. Изменяем его клавишами, подтверждаем клавишей Ввод.

После сохранения параметра высвечивается надпись End ненадолго. При возникновении ошибки появляется Err, означает недопустимые параметры, неправильное действие (многие параметры программируются при выключенном приводе).

В итоге составлен алгоритм начального запуска и первой настройки преобразователя частоты:

  • Контроль частотного преобразователя мотора и питания.
  • Первый запуск и сброс значений параметров на заводские до 50 герц.
  • Настройка опций управления.
  • Настройка источника задающей частоты.
  • Окончательные настройки.

В инструкции имеются ответы на вопросы, возникающие в процессе настройки.

Если управление частотником происходит вручную, а не контроллером, то возникает неисправность резистора переменной величины (потенциометра). Если сломался наружный прибор, то переключаются на выносную панель. Если неисправен прибор на выносной панели и нет наружного, то его устанавливают самостоятельно.

Потенциометр

Потенцио́метр (от лат.  potentia  — «сила» и греч. μετρεω  — «измеряю») — измерительный прибор, предназначенный для определения напряжения путём сравнения двух, в общем случае, различных напряжений или ЭДС с помощью компенсационного метода. При известном одном из напряжений позволяет определять второе напряжение.

Исторически потенциометр — один из первых точных измерителей напряжений — вольтметров. Изобретён немецким физиком Иоганном Поггендорфом в 1841 году [1] .

Потенциометр (измерительный прибор) не следует путать с трёхвыводным переменным резистором — электронным компонентом, жаргонно также называемым «потенциометром».

Иногда «потенциометрами» не совсем корректно называют датчики перемещений и поворотов, основанные на потенциометрический схеме, например, датчики положения дроссельной заслонки в двигателях внутреннего сгорания.

Содержание

Принцип действия [ править | править код ]

Потенциометр представляет собой делитель напряжения из резисторов (резистивный делитель) с переменным сопротивлением (переменных резисторов).

Известное с достаточной точностью одно из сравниваемых напряжений принято называть «опорным напряжением» или «опорной ЭДС». В иностранной литературе опорное напряжение называют «референтным напряжением» и обычно обозначают U r e f > .

В качестве нуль-индикаторов исторически первыми стали применять чувствительные гальванометры. В современной электронике в качестве нуль-индикатора применяют дифференциальные усилители с высоким коэффициентом усиления.

Для схемы, изображённой в верхней части рисунка, по правилам Кирхгофа

  • R 1 >  — сопротивление участка переменного резистора R 0 > от низа (по рисунку) до подвижного контакта;
  • R 0 >  — полное сопротивление переменного резистора.

Для схемы, приведённой снизу рисунка

То есть, зная соотношение сопротивлений резисторов делителя напряжения при равенстве напряжений («балансе»), можно численно выразить одно напряжение ( U 0 > или U x > ) через другое напряжение ( U x > или U 0 > соответственно).

Реохорды, представляющие собой кусок проволоки, в современных потенциометрах практически не применяют, только иногда используются в демонстрационных целях. Современный реохорд представляет собой переменных резистор, обычно выполнен в виде однослойной спиральной намотки высокоомной проволоки на прямолинейное или тороидальное основание (каркас). Название «реохорд» в потенциометрах прочно закрепилось за этими переменными резисторами.

В качестве источника опорного напряжения (ИОН) исторически применялись электрохимические источники стабильного во времени и воспроизводимого напряжения — нормальные электрохимические элементы. В современных потенциометрах в качестве источников опорного напряжения применяют обычно полупроводниковые прецизионные ИОНы — термокомпенсированные стабилитроны и ИОНы «запрещённой зоны».

Если нагружение источника известного напряжения на резистивный делитель напряжения недопустимо, например, в случае применения источников с высоким внутренним сопротивлением, то по этому источнику предварительно калибруют другой источник с достаточно малым внутренним сопротивлением.

При балансе напряжений резистивного делителя и опорного напряжения ток через нуль-индикатор (гальванометр) равен нулю. Таким образом, источник опорного напряжения работает при балансе в режиме холостого хода, что позволяет использовать в качестве источников опорного напряжения прецизионные источники с высоким внутренним сопротивлением, например, нормальные электрохимические элементы. Аналогично, по этой же причине возможно измерение ЭДС источников неизвестного напряжения с высоким внутренним сопротивлением без искажения результата измерения, например, ЭДС электрохимических потенциометрических датчиков.

Особенности потенциометров для измерения сверхмалых напряжений [ править | править код ]

При измерении сверхмалых напряжений (на уровне микровольт — долей милливольта) становится существенным искажение результата измерения от термо-ЭДС «паразитных» термопар, образующихся в точках электрического соединения разнородных проводниковых материалов (например, медных проводников и высокоомных проводников переменных резисторов), если температура этих соединений (спаев) не равна. Без применения специальных мер значения паразитных термо-ЭДС могут достигать десятков микровольт. Например, термо-ЭДС пары медь — оловянно-свинцовый припой составляет около 3-7 мкВ/К, что при значении измеряемых напряжений в единицы-десятки микровольт может дать относительную погрешность измерения в несколько десятков процентов, что обычно недопустимо. Поэтому при конструировании подобных потенциометров прибегают к специальным мерам для снижения паразитных термо-ЭДС. Радикальная мера — тщательная термоизоляция прибора от наружной среды, иногда — термостатирование. Для пайки электрических соединений применяют припои, дающие малые термо-ЭДС в паре с медью, например, оловянно-кадмиевые припои, термо-ЭДС которых в паре с медью менее 0,3 мкВ/К.

Регистрирующие и самопишущие автоматические потенциометры [ править | править код ]

Помимо измерительных потенциометров, в которых балансировка (изменение сопротивлений резистивного делителя до достижения равенства измеряемого напряжения и напряжения, снимаемого с реохорда) выполняется вручную, существуют потенциометры с автоматической балансировкой. Автоматические устройства широко используются, например, в самопишущих регистрирующих приборах (самописцах процессов на бумажной ленте), которые до сих пор распространены в системах управления производственными процессами. Электромеханические потенциометры постепенно вытесняются цифровыми устройствами хранения и отображения информации.

Принцип действия автоматических потенциометров основан на применении следящего электромеханического контура автоматического регулирования. Измеряемое напряжение и напряжение с движка реохорда подаются на дифференциальный усилитель рассогласования, выход которого через усилитель мощности управляет реверсивным электродвигателем. Электродвигатель через механические элементы (тросики, шестерни) перемещает движок реохорда в нужную сторону так, чтобы свести сигнал рассогласования к нулю. Движок реохорда жёстко связан с указывающей стрелкой, перемещающейся по оцифрованной в единицах измеряемой величины шкале. Шкала не обязательно должна быть оцифрована в единицах напряжения; например, при работе прибора в комплекте с каким-либо термопреобразователем может быть оцифрована в градусах температуры; при работе со стеклянным электродом может быть оцифрована в единицах pH (pH-метр). В самопишущих приборах одновременно со стрелкой перемещается перо по бумаге. Перо чертит на бумаге линию и тем самым регистрирует изменение измеряемой величины, обычно, в зависимости от времени.

Как сделать простейший диммер на 220 В

Как сделать простейший диммер на 220 В

Простейший диммер состоит всего из 5 деталей и способен регулировать мощность нагрузки до 2 кВт при напряжение переменного тока 220 В. С его повторением справится даже начинающий радиолюбитель, главное не забывать о технике безопасности при испытании и применении этой простой схемы.

Детали

  • Потенциометр 200 кОм — http://alii.pub/5o27v2
  • Резистор 10 кОм — http://alii.pub/5h6ouv
  • Динистор DB3 — http://alii.pub/5o28g9
  • Конденсатор 100 нФ — http://alii.pub/5n14g8
  • Симистор BTA 41 600B, или BTA 16 600 — http://alii.pub/5o284l

Все детали доступны и дефицита не составляют.

Схема простейшего диммера

Как сделать простейший диммер на 220 В

Схема диммера представлена на рисунке и включается последовательно в цепь нагрузки. Принцип работы основан на обрезке полуволн симистором. По приходу синусоиды он как бы открывается с замедлением и пропускает в зависимости от установки лишь части той или иной полуволны.

Данным диммером можно регулировать и более низкое напряжение порядка 12 В при должном подборе резисторов.

Изготовление простого диммера своими руками

Из куска фольгированного текстолита вырезаем небольшой прямоугольник.

Как сделать простейший диммер на 220 В

Зачищаем медное покрытие металлической губкой для удаления окислов и лучшей пайки. При помощи ножовки, надфиля или напильника разрезаем фольгу на квадраты. Обратите внимание, что два из них соединены между собой.

Как сделать простейший диммер на 220 В

Сверлим 6 отверстий под симистор и потенциометр.

Как сделать простейший диммер на 220 В

Устанавливаем элементы и запаиваем.

Как сделать простейший диммер на 220 В

Как сделать простейший диммер на 220 В

С боку припаиваем конденсатор.

Как сделать простейший диммер на 220 В

Как сделать простейший диммер на 220 В

Обрезаем вывода резистора. Припаиваем динистор.

Как сделать простейший диммер на 220 В

Диммер почти готов. Осталось припаять провода для подключения в разрыв нагрузок.

Как сделать простейший диммер на 220 В

Получилась совсем маленькое, но очень полезное и мощное устройство.

Как сделать простейший диммер на 220 В

Проверка диммера в работе

Пробуем регулировать яркость галогенной ламы.

Как сделать простейший диммер на 220 В

Все отлично и плавно. До 100 Вт мощности нагрузки симистор не обязательно устанавливать на радиатор.

Теперь пробуем регулировать мощность трансформатора выжигателя.

Как сделать простейший диммер на 220 В

Диммер отлично справляется со своей работой. Вы же можете использовать данный регулятор, скажем, для своего паяльника и тп.

Смотрите видео

Цифровой потенциометр AD5220

AD5220 — переменный резистор с цифровым управлением. Это устройство выполняет ту же электронную функцию регулирования, что и механический потенциометр или переменный резистор. Сопротивление измененяется дискретно при подаче тактового импульса на счетный вход CLK, направление счета (увеличение или уменьшение сопротивления) определяется уровнем сигнала на входе UP/DOWN.

Доступны 128 дискретных значений сопротивления, номинальный ряд потенциометров 10, 50 и 100 кОм.

На рис.1 показана функциональная схема цифрового потенциометра. При его номинале 10 кОм сопротивление между выводами А и В постоянно и составляет 10 кОм, а шаг приращения сопротивления будет равен:

RSTEP — 10 кОм / 128 — 78 Ом.

Типовое напряжение питания 5 В, потребляемый ток не более 40 мкА.

Назначение выводов показано на рис.2.

На рис.3 показана типовая схема включения цифрового потенциометра AD5220.

Рис. 4. Схема сопряжения с круговым датчиком

На рис.4 показано использование цифрового потенциометра AD5220 в схеме сопряжения с круговым датчиком положения вала двигателя RE11CTV1Y12-EF2CS. Схему разработал П. Кайроломук (Калифорния, США) [1]. Круговой датчик преобразовывает угловое положение вала в код, который поступает на квадратурный декодер (LS7084 — декодер фазового сдвига на 90°). Декодер вырабатывает сигналы управления CLK и U/D для цифрового потенциометра.

Сигналы А и В (рис.5) кругового датчика проходят через квадратурный декодер, который преобразовывает разность фаз между сигналами А и В в управляющие сигналы CLK и U/D для AD5220. Когда сигнал В опережает сигнал А (вал двигателя вращается по часовой стрелке), на цифровой потенциометр поступает высокий уровень U/D. Когда сигнал А опережает сигнал В (вал двигателя вращается против часовой стрелки) на цифровой потенциометр поступает низкий уровень U/D. Квадратурный декодер одновременно вырабатывает синхронный тактовый сигнал для AD5220. Линейное изменение ширины тактового импульса выполняется регулировкой RBIAS.

Кроме декодирования сигналов квадратуры углового положения и выработки тактового сигнала, LS7084 также обеспечивает фильтрацию шумов, колебаний и других переходных эффектов. Эта особенность важна для данного типа устройств. В отличие от оптических кодирующих устройств, RE11CT-V1Y12-EF2CS — дешевый электрический круговой датчик, в котором любой поворот вала может создать сильный удар или шумовые всплески из-за несовершенной природы металлических контактов выключателя. LS7084 препятствует прохождению такого рода помехам на цифровой потенциометр AD5220.

Принцип работы устройства очень прост. Когда вал двигателя вращается по часовой стрелке, сопротивление между выводами В1 и RWB1 увеличивается до тех пор, пока величина переменного сопротивления цифрового потенциометра не достигает максимального значения. Дальнейшее вращение вала в том же направлении не имеет никакого воздействия на выходное сопротивление.
Аналогично, при вращении вала против часовой стрелки, сопротивление между выводами В1 и RWB1 уменьшается, пока сопротивление не достигает нулевого значения, и дальнейшее вращение вала в том же направлении не дает никакого эффекта.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector