Ele-prof.ru

Электро отопление
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Параметры источника электроэнергии

Параметры источника электроэнергии

В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.

Получите невероятные возможности

Конспект урока «Параметры источника электроэнергии»

Прежде чем мы приступим к рассмотрению новой темы, давайте вспомним, что вообще называют источником электрической энергии.

Все электромагнитные процессы, которые протекают в электротехнических устройствах, как правило, достаточно сложны. Однако во многих случаях, их основные параметры можно описать с помощью таких понятий, как: ток, напряжение, сопротивление, мощность и электродвижущая сила.

Вообще совокупность электротехнических устройств, состоящая из соответствующим образом соединённых источников и приёмников электрической энергии, предназначенных для генерации, передачи, распределения и преобразования электрической энергии принято рассматривать, как электрическую цепь.

Электрическая цепь состоит из отдельных частей (устройств), которые выполняют определённые функции и называются элементами цепи.

Понятно, что основные элементы цепи – это источники и приёмники электрической энергии.

Электротехнические устройства, которые производят электрическую энергию, называют источниками или генераторами электрической энергии, а устройства, которые потребляют её – потребителями или приёмниками электрической энергии.

Итак, вспомним определение: устройство, которое преобразует какую-либо энергию (механическую, химическую, тепловую или световую) в электрическую, называют источником.

Примерами источников электроэнергии служат гальванические элементы, аккумуляторы, генераторы и многие другие устройства.

Можно даже сказать, что в быту (то есть дома) источниками электрической энергии являются обыкновенные розетки, куда мы подключаем чайники, компьютеры, стиральные машинки и так далее.

Понятно, что основное назначение источников – это питание потребителей электроэнергией.

Все источники энергии называют активными элементами. Они бывают постоянного и переменного тока. Однако их параметры аналогичны.

Как мы уже знаем, источник вырабатывает электрическую энергию за счёт действия каких-либо внешних сил.

При этом в результате действия внешней силы каждый единичный электрический заряд при движении внутри источника получает некоторое количество энергии.

Величина энергии, которую приобретает единичный электрический заряд внутри источника от внешних сил, называется электродвижущей силой источника (или коротко ЭДС). Единица измерения электродвижущей силы источника – вольт.

Рабочее напряжение и мощность электрогенераторов, как правило, указывают на их корпусе. Так, например, на корпусе гальванических элементов обозначают их начальную электродвижущую силу.

Если получается так, что для питания нагрузки необходимо напряжение или ток, которые превышают соответствующие величины одного гальванического элемента, то из них собирают батарею. Причём, элементы, соединённые в батарею, должны иметь одинаковые типы, электродвижущую силу и внутреннее сопротивление.

Наверняка вы слышали такое словосочетание, как короткое замыкание. Все, конечно, представляют себе, что это за явление, но не каждый может объяснить.

Давайте попробуем разобраться.

Итак, если соединить проводом электроды источника тока, получим как раз-таки то, что и называется режимом короткого замыкания.

При большой мощности источника сила тока в режиме короткого замыкания достигает очень большой величины, что приводит к выделению большого количества тепла внутри электромеханического генератора и разрушению в нём обмоток. Причём сила тока может стать настолько велика, что провод, который замыкает электроды источника, начнёт раскаляться и даже плавиться.

Ток короткого замыкания очень опасен, так как может повредить всё: и источник электрической энергии, и потребитель, и даже соединительные провода.

В свою очередь, перегрев соединительных проводов может привести к их возгоранию и пожару.

Поэтому при питании устройств от мощных источников в потребителе почти всегда вводят защиту от короткого замыкания. Которое, кстати, может произойти внезапно, например, из-за аварий устройств, ошибок людей и ударов молний.

Самая простая защита от разрушительных последствий короткого замыкания — это плавкий предохранитель. Как правило, такое устройство устанавливают для защиты квартирной электропроводки и бытовых электроприборов.

Плавкий предохранитель представляет собой тонкую проволоку из легкоплавкого металла, которая вставлена в стеклянную либо керамическую трубку. При малейших отклонениях в работе электрической цепи, например, увеличение силы тока выше допустимого значения, проволока нагревается и расплавляется. При этом происходит размыкание электрической цепи.

Более сложной защитой от разрушительных последствий короткого замыкания является использование различных автоматов защиты сети. Примером таких автоматов служит автоматический выключатель.

Читайте так же:
Номинальные токи кабельных линий

Главная функция автоматического выключателя – защита проводов и кабелей от перегрузки и короткого замыкания.

Данный прибор представляет собой устройство, которое регулирует подачу тока в цепи. Действует автоматический выключатель при помощи встроенного прибора, фиксирующего изменение напряжения, частоты и силы тока. Так, например, если сеть перегружается, срабатывает тепловое реле, и автомат выключается. Скорость, с которой это происходит – минимальна. Поэтому применение автоматического выключателя гарантирует безопасное использование нескольких бытовых электроприборов одновременно и сложного оборудования на производстве.

В отличие от плавкого предохранителя, который можно использовать только однократно, автоматические выключатели предназначены для многоразовой защиты электрических установок от перегрузок и коротких замыканий.

Параметром устройств защиты является максимально допустимая мощность, которая в этом случае задаётся в виде допустимой силы рабочего тока. Величину силы тока, как правило, указывают на корпусе или контактах предохранителей.

В случае перегорания плавкой вставки в предохранителе, её следует заменить на аналогичную с точно такой же величиной допустимого тока.

Заменять плавкую вставку на вставку с большей силой тока очень опасно, так как это может привести к перегрузке электрической сети и возгоранию проводов и других элементов.

Мы с вами уже выяснили, что источник электроэнергии предоставляет потребителю энергию с определёнными параметрами. Эти параметры обязательно должны соответствовать параметрам потребителя, иначе потребитель не будет работать и в скором времени выйдет из строя.

Это говорит о том, что рабочее напряжение потребителя должно соответствовать рабочему напряжению источника, а мощность, потребляемая потребителем, не должна превышать его допустимой мощности.

Например, если подключить электроприбор, который рассчитан на напряжение 220 В, в электрическую сеть с напряжением 127 В, то он не сможет работать из-за недостатка энергии.

И наоборот, если в электрическую сеть с напряжением 220 В подключить электроприбор, который рассчитан на 127 В, то он также не сможет работать. Но уже по другой причине: электроприбор будет получать от источника слишком большую энергию, что может привести к его поломке.

В лучшем случае сработают предохранители, защищающие его от возникшей перегрузки, однако электроприбор при этом всё равно не сможет работать.

Итоги урока

На этом уроке мы с вами обсудили некоторые из параметров источников электроэнергии. Узнали, что называют электродвижущей силой источника. Поговорили о таком опасном явлении, как короткое замыкание. Узнали, в результате чего оно возникает, и какие устройства помогают с ним бороться.

Библиотека

Постоянно пополняющаяся подборка книг для самодельщиков и не только.

TOP-50 — Последние поступления:
Импульсные источники питания. Switch Mode Power Supplies — 05.04.12
Транзисторная преобразовательная техника — 26.03.12
Импульсные источники питания. Теоретические основы проектирования и руководство по практическому применению — 19.03.12
Основы силовой электроники. Учебник — 11.03.12
Трансформаторы и дроссели в импульсных устройствах — 05.03.12
Однотактные преобразователи напряжения в устройствах электропитания РЭА — 27.02.12
Схемотехника функциональных узлов источников вторичного электропитания. Справочник — 20.02.12
Основы силовой электроники — 13.02.12
Оптимальное проектирование силовых высокочастотных ферромагнитных устройств — 05.02.12
Обратноходовый преобразователь — 30.01.12
Источники электропитания РЭА. Справочник. — 23.01.12
Справочник типовых решений с применением светодиодов — 16.01.12
Практическая схемотехника. Преобразователи напряжения. Книга 3. — 05.01.12
Практическая схемотехника. Источники питания и стабилизаторы. Книга 2. — 25.12.11
Источники питания радиоэлектронной аппаратуры — 27.11.11
Источники вторичного электропитания с бестрансформаторным входом — 21.11.11
Источники питания. Расчет и конструирование. — 14.11.11
Начальная школа построения импульсных DC/DC преобразователей — 07.11.11
Импульсные источники вторичного электропитания в бытовой радиоаппаратуре — 31.10.11
Проектирование вторичных источников питания с выходом на постоянном токе — 24.10.11
Источники электропитания электронных средств — 17.10.11
500 схем для радиолюбителей. Источники питания. — 10.10.11
300 схем источников питания — 03.10.11
Импульсные источники питания. Современная схемотехника. — 27.09.11
Силовая электроника: от простого к сложному — 20.09.11
Оригинальные конструкции источников питания — 05.09.11
Электрические униполярные машины — 10.08.11
Изобретателю о ветродвигателях и ветроустановках — 26.07.11
Ветроэнергетика — 10.07.11
Практическое руководство по устройствам мобильной энергии — Practical Guide to Free-Energy Devices — 02.07.11
Ветронасосные и ветроэлектрические агрегаты — 16.06.11
Автономные ветроэлектрические установки — 08.06.11
500 схем для радиолюбителей. (Часть.4. Источники питания) — 14.02.09
Двигатель Стирлинга, модель 2-90М — 19.08.08
Машины, работающие по циклу Стирлинга — 19.08.08
Аккумуляторы — 28.07.08
Самодельные электрические и паровые двигатели — 27.04.08
Экспериментальные источники электроэнергии — 27.04.08
Термоэлектрические генераторы — 20.04.08
все публикации в разделе Книги
Читайте так же:
Подключение кабеля между розетками

Статьи (публикаций: 9)

Подборка интересных статей по практическому применению некоторых идей и изобретений.

Электрическая энергия, ее свойства и применение

Из всех видов энергии в настоящее время наиболее широко применяется электромагнитная энергия, которую в практике обычно называют электрической.

Энергия — это количественная мера движения и взаимодействия всех форм материи. Для любого вида энергии можно назвать материальный объект, который является ее носителем.

Механическую энергию несут, например, вода, падающая на лопасти гидротурбины, заведенная пружина, тепловую — нагретый газ, пар, горячая вода.

Носителем электрической энергии является особая форма материи — электромагнитное поле, главная особенность которого состоит в том, что оно оказывает силовое воздействие на электрически заряженные частицы, зависящее от их скорости и величины заряда. Это свойство электромагнитного поля является основой связанных между собой электрических и магнитных явлений, известных из курса физики — взаимодействия электрически заряженных или намагниченных тел, электрического тока, электромагнитной индукции и др.

Использованием этих явлений для получения, передачи и преобразования электрической энергии занимается электротехника. Применение электромагнитного поля и его энергии для передачи информации без проводов — задача радиотехники.

Применение электрической энергии

Широкое применение электрической энергии объясняется ее ценными свойствами, возможностью эффективного преобразования в другие виды энергии (механическую, тепловую, световую, химическую) с целью приведения в действие машин и механизмов, получения тепла и света, изменения химического состава вещества, производства и обработки материалов и т. д.

Преобразование электрической энергии в механическую с помощью электродвигателей позволяет наиболее удобно, технически совершенно и экономически выгодно приводить в движение многочисленные и разнообразные рабочие машины и механизмы (металлорежущие станки, прокатные станы; подъемно-транспортные машины, насосы, вентиляторы, швейные и обувные машины, молотилки, зерноочистительные, мукомольные машины и т. д.).

Электродвигатели приводят в движение поезда, морские и речные суда, городской транспорт. С применением в промышленности электродвигателей стало возможным отказаться от неудобного и малоэффективного группового трансмиссионного привода, перевести рабочие машины на индивидуальный привод (у каждой рабочей машины — свой электродвигатель), а сложные машины (например, прокатный стан, бумагоделательная машина и т. п.) — на многодвигательный привод, когда каждый из группы электродвигателей выполняет в приводе свою определенную функцию.

Электрификация рабочих машин дает возможность не только механизировать, но и максимально автоматизировать силовые процессы, так как электродвигатель позволяет в широких диапазонах регулировать мощность и скорость привода.

Во многих технологических процессах используют преобразование электрической энергии в тепловую и химическую. Так, например, электронагрев и электролиз дают возможность получать высококачественные специальные стали, цветные металлы, обеспечивают наивысшую чистоту производимых материалов. При электротермической обработке металлов, резиновых изделий, пластмасс, стекла, древесины получают продукцию высокого качества.

Электрохимические процессы, составляющие основу гальванотехники, позволяют получать антикоррозионные покрытия, идеальные поверхности для отражения лучей и т. д.

Большое развитие, особенно в нашей стране, получила электросварка, обеспечивающая высокую производительность труда и другие технико-экономические показатели.

Электрические источники света обеспечивают высокое качество искусственного освещения. Благодаря применению электрической энергии получены выдающиеся результаты в технике связи, автоматике, электронике, в управлении и контроле технологических процессов и т. д.

В таких областях, как медицина, биология, астрономия, геология, математика и т. д., еще недавно применялись только электрические устройства общего назначения (электролампы, электронагреватели, электродвигатели и т. п.), а теперь все шире внедряются специализированные электрические приборы, аппараты, установки, которые обеспечивают дальнейшее развитие этих областей как в научном, так и в прикладном отношении.

Большое значение для развития науки и техники имеют электронные вычислительные машины, которые становятся распространенным и высокоэффективным средством научных исследований, экономических расчетов, планирования, управления производственными процессами, диагностики болезней и т. д.

Получение электрической энергии

Электрическую энергию можно получить из других видов энергии непосредственно или путем промежуточных преобразований.

Для этого используют природные энергетические ресурсы — реки и водопады, океанские приливы, органическое топливо, ядерное топливо, солнечную радиацию, ветер, геотермальные источники.

Читайте так же:
Устройство выключателя света с одной клавишей

В больших количествах электрическую энергию получают на электростанциях с помощью электромеханических генераторов — преобразователей механической энергии в электрическую.

На гидроэлектростанциях механическая энергия к электрогенераторам поступает от гидротурбин, которые воспринимают постоянно возобновляемую в природе энергию течения рек. На тепловых электростанциях используют энергию органического топлива. Тепловая энергия, полученная при сжигании топлива, поступает в тепловые турбины (паровые, газовые), превращается в них в механическую и передается электрогенераторам.

На атомных электростанциях тепловую энергию получают за счет энергии, содержащейся в ядрах атомов, а в остальном схема получения электрической энергии такая же, как на тепловой станции.

Прямое преобразование химической, тепловой, лучистой энергии в электрическую осуществляют с помощью электрохимических, термоэлектрических, термоэмиссионных, фотоэлектрических генераторов. Эти устройства имеют малую мощность и поэтому для большой энергетики непригодны, а применяются в радиотехнике, автоматике, космической технике.

Для получения электроэнергии в больших количествах более перспективны магнитогидродинамические генераторы и устройства для прямого преобразования термоядерной энергии в электрическую.

Передача и распределение электрической энергии

Повсеместное использование электрической энергии при концентрации природных энергетических ресурсов в отдельных географических районах привело к необходимости передачи ее на большие расстояния, распределения между приемниками в большом диапазоне мощностей.

В Советском Союзе действуют электропередачи протяженностью более 1000 км (крупнейшая из них между Волжской ГЭС им. XXII съезда КПСС и Москвой). Решаются вопросы, связанные со строительством сверхдальних электропередач (3500—5000 км) из районов Сибири в европейскую часть страны.

Электрическая энергия легко распределяется по приемникам любой мощности. В технике связи, в автоматике и измерительной технике используют устройства малой мощности (единицы и доли ватта). Вместе с тем имеются электрические устройства (двигатели, нагревательные установки) мощностью в тысячи и десятки тысяч киловатт.

Для линий передачи и распределительных сетей применяют металлические провода (из алюминия, стали, меди). Действием электрогенератора в проводах и окружающем их диэлектрике устанавливается электромагнитное поле, несущее энергию.

При наличии проводов поле достигает высокой концентрации, поэтому передача осуществляется с высоким коэффициентом полезного действия и в количестве, достаточном для приведения в действие различных приемников, в том числе большой мощности.

В радиотехнике используется передача электромагнитного поля без соединительных проводов, поэтому поле, распространяясь в пространстве, рассеивается в большом объеме. Приемные устройства улавливают лишь небольшую часть энергии, которой недостаточно для приведения в действие машин, нагревательных устройств, источников света и т. п. Однако для передачи информации такой способ пригоден, так как для воспроизведения сигналов достаточно принять ничтожно малую часть энергии передатчика.

Электрификация народного хозяйства и ее значение

Ценные свойства электрической энергии были замечены еще тогда, когда наука и техника делали первые шаги с целью ее использования.
Более 100 лет назад К. Маркс и Ф. Энгельс предсказали глубокое влияние электрификации на развитие человеческого общества.

Об этом неоднократно писал и говорил В. И. Ленин. Он видел не только технические и экономические возможности, но и исключительное социальное значение электрификации.

Указывая на необходимость электрификации, В. И. Ленин не ограничивал ее роль периодом восстановления народного хозяйства и построения фундамента социализма, а видел в ней материально-техническую базу коммунистического общества. «Если не перевести Россию на иную технику, более высокую, чем прежде, не может быть речи о восстановлении народного хозяйства и о коммунизме. Коммунизм есть Советская власть плюс электрификация всей страны, ибо без электрификации поднять промышленность невозможно».
В феврале 1920 г. приступила к работе созданная по инициативе В. И. Ленина Государственная комиссия по электрификации России (ГОЭЛРО). При постоянном внимании и поддержке В. И. Ленина комиссия подготовила комплексный план восстановления и развития наиболее важных отраслей народного хозяйства на основе электрификации. В декабре того же года план был принят на VIII Всероссийском съезде Советов. Сравнительно с современным уровнем электрификации план ГОЭЛРО невелик—было намечено построить за 10 — 15 лет 30 электростанций общей мощностью 1,5 млн. кВт при годовом производстве 8,8 млрд. кВт•ч электроэнергии. Но тогда, в годы разрухи и голода, и такой план многим казался нереальным. В; И. Ленин твердо верил в успех дела и, отмечая выдающееся хозяйственное и политическое значение плана, сказал о нем: «На мой взгляд, это — наша вторая программа партии».
План ГОЭЛРО был выполнен за 10 лет, а к 1935 г. мощность построенных электростанций превысила плановые наметки почти в 2,5 раза.
О дальнейшем развитии электроэнергетики можно судить по динамике производства электрической энергии (табл. В.1).

Читайте так же:
Сенсорный выключатель для светодиодного профиля

Годовая выработка электроэнергии стремительно росла и растет в основном за счет ввода в действие новых тепловых и гидравлических электростанций. При этом на первый план выступает тенденция увеличения единичной мощности электростанций и их энерго-агрегатов.

Год19131931194019601965197019751980
Производство электроэнергии, млрд. кВт•ч2,0310,748,3292,3506,7740,910381295

Потребности народного хозяйства в электрической энергии непрерывно растут, этим и обусловливается рост ее производства. Для того чтобы удовлетворять эти потребности, необходимо строить не только новые электростанции, но и линии электропередачи, различные потребляющие энергию электроустановки, увеличивать производство трансформаторов, электродвигателей, коммутационной аппаратуры, электротехнических материалов, различной аппаратуры и приборов для автоматизации производственных процессов, электрификации быта и т. д.

В электрической системе (источник — линия— приемник) энергия не накапливается, т. е. одновременно с получением в генераторе она полностью преобразуется в другой вид в приемнике. Поэтому быстрый рост производства электроэнергии свидетельствует о таких же темпах электрификации в целом, включая ее передачу, распределение и использование.

В настоящее время во всем мире на производство электрической энергии используется около 1/3 всех добываемых энергоресурсов. Потребление электроэнергии растет в среднем вдвое быстрее, чем потребление энергетических ресурсов в целом. В 1960 г. произведено 2000 млрд. кВт•ч электроэнергии, а в 1975 г. — 6500 млрд. По прогнозам специалистов также примерно втрое вырастет потребление электроэнергии за период с 1980 по 2000 г. и к началу следующего века достигнет колоссальной цифры — 30 000 млрд. кВт•ч.

Еще более быстрыми темпами развивается электрификация в СССР, которая есть и будет основой непрерывного научно-технического и социального прогресса. Решается грандиозная задача — осуществление полной электрификации всей страны, создание материальной базы коммунистического общества.

Полная электрификация означает использование электрической энергии повсеместно: в промышленности, на транспорте, в сельском хозяйстве, в быту. При этом особое внимание уделяется комплексной механизации и автоматизации производства с широким применением электронных вычислительных машин, электрификации тех участков и технологических процессов во всех отраслях народного хозяйства, в которых применение электрической энергии по тем или иным причинам было недостаточно.
Важнейшей задачей является рациональное использование электрической энергии, максимальное сокращение потерь в процессе ее потребления, производства, передачи и распределения.

Задача экономии ставится не только в отношении электрической энергии, а распространяется на все энергетические ресурсы. Она является частью общей большой работы по экономии и рациональному использованию всех видов материальных, трудовых и финансовых ресурсов.

В отчетном докладе XXVI съезду КПСС указано, что от выполнения этой работы, от умелого и эффективного использования всех имеющихся ресурсов зависит дальнейшее развитие экономики страны. Хозяйское отношение к общественному добру, умение полностью, целесообразно использовать все виды ресурсов съезд провозгласил одним из важнейших принципов экономической стратегии КПСС на предстоящий период.

Ориентировочные расчеты показывают, что запасов органического топлива по уровню потребления 2000 г. человечеству хватит примерно на 150 лет. При том же уровне потребления лишь 10% электроэнергии могут дать все реки мира, еще меньше в настоящее время можно ожидать от использования морских приливов, энергии ветра. Технически сильно ограничены возможности использования внутриземного тепла, энергии излучения Солнца. Таким образом, в ближайшем будущем основными источниками энергии будут органическое и ядерное топливо.

Планируемое ускорение строительства атомных электростанций вызывается не только необходимостью экономить органическое топливо, но и их решающими преимуществами в отношении загрязнения окружающей среды.
Для избавления человечества от угрозы «энергетического голода», устранения вредного воздействия на окружающую среду ученые ищут новые пути получения электрической энергии, увеличения мощности и коэффициента полезного действия установок для прямого преобразования тепловой, химической, солнечной энергии в электрическую.

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Читайте так же:
Как правильно установить выключатель света с двумя клавишами

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Источники электроэнергии

Основным источником электроэнергии в мире являются, как известно, различного рода электростанции – тепловые электростанции, гидроэлектростанции и электростанции атомные.

Тепловые электростанции (ТЭС), работающие на органическом топливе (уголь, мазут, газ, сланцы, торф), являются на сегодня основным видом используемых в России энергопроизводителей.
Выбор места размещения тепловых электростанций определяется в основном наличием в данном регионе природных и топливных ресурсов. Мощные ТЭС строятся, как правило, в местах добычи топливных ресурсов или недалеко от крупных центров нефтеперерабатывающей промышленности. Тепловые электростанции, на которых в качестве топлива используются местные виды горючего (сланец, торф, низкокалорийные и многозольные угли), стараются размещать согласно потребности в электроэнергии и, в тоже время, с учётом наличия тех или иных видов топливных ресурсов.
Электростанции, работающие на высококалорийном топливе, доставка которого к месту использования экономически целесообразна, размещаются обычно с учётом потребительского спроса на электроэнергию.

Гидроэлектростанции представляют собой специальные сооружения, возведённые в местах перекрытия больших рек плотиной и использующие энергию падающей воды для вращения турбин электрогенератора. Этот способ получения электроэнергии является наиболее экологичным, поскольку обходится без сжигания тех или иных видов топлива и не оставляет никаких вредных отходов после себя.

Атомные электростанции (АЭС) отличаются от тепловых лишь тем, что, если в ТЭС для нагрева воды и получения пара используется горючее топливо, то в АЭС источником нагрева воды служит энергия тепла, выделяемого в процессе ядерной реакции.

В настоящее время большую часть всей вырабатываемой в мире электроэнергии дают тепловые электростанции, мощность которых может составлять сотни тысяч и миллионы киловатт.
Для совместного и согласованного производства электроэнергии электростанции различного типа объединяют в энергосистемы. Объединение электростанций, а также самих энергосистем между собой позволяет снизить стоимость электроэнергии и гарантирует бесперебойность режима электроснабжения потребителя. Объясняется это тем, что производство и расходование электроэнергии происходят одновременно, и невозможно аккумулировать всю вырабатываемую энергию в каком-либо виде. Поэтому электростанции обязаны иметь определённый резерв по рабочей мощности, необходимый для того, чтобы быть способными в любой момент удовлетворить возросший спрос на электроэнергию со стороны потребителя (на возросшую нагрузку). А величина потребления (спроса на энергию) может резко колебаться при изменении режимов и условий работы потребителей.

В городах в зимний период, например, потребление электроэнергии резко возрастает, а летом — снижается. В сельском хозяйстве, напротив, электрические подстанции больше загружены именно летом, когда производятся сезонные полевые работы. Кроме того, максимальные нагрузки электростанций, расположенных на востоке и западе страны обычно не совпадают из-за разницы во времени. При коллективной работе электростанций они подпитывают друг друга, что обеспечивает их более равномерную загрузку и повышение КПД работы.

На электростанциях, не входящих в состав энергосистемы, не допускается применение мощных узлов по транспортировке и преобразованию электроэнергии. Объясняется это тем, что выход подобного узла из строя моментально парализует работу промышленных предприятий, обесточивает целые районы и грозит аварийной остановкой систем водоснабжения и т. п.

При объединении энергопроизводителей в энергосистемы нет оснований отказываться от таких мощных агрегатных узлов, поскольку нагрузку вышедшего из строя участка линии мгновенно подхватят оставшиеся в рабочем состоянии системы.

Наряду с традиционным способом получения электроэнергии с помощью электростанций всё большую популярность приобретают в последнее время альтернативные источники электроэнергии. К подобным источникам можно отнести, например, ветряные электрогенераторы, которые преобразуют природную силу ветра в электрический ток.

Всё большей популярностью в наше время пользуются и солнечные батареи, которые, в отличие от электрогенератора, используют принцип прямого преобразования энергии солнечных лучей в электрическую энергию (фотоэффект).

none Опубликована: 2011 г. 0
Вознаградить Я собрал 0 0

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector