Ele-prof.ru

Электро отопление
34 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

ПУЭ 7. Правила устройства электроустановок. Издание 7

ПУЭ 7. Правила устройства электроустановок. Издание 7

Какие места и зоны регламентируются по нормам приведены в п. 7.62 СНиП 23 – 05 – 95.

Аварийное освещение эвакуационных путей.
Освещаемые объектыСредняя освещенность Еср, лк не менееРаспределение освещенности Емин / Еср не менее
1Пути эвакуации зон повышенной опасности150,10
2Пути эвакуации шириной до 2 м10,025
3Эвакуационное освещение больших площадей0,50,025
Дежурное и охранное освещение.
Освещаемые объектыСредняя освещенность Еср, лк не менее
1Охранное освещение (при отсутствии специальных технических средств)0,5

В современных нормах и правила проектирования освещения различают запасное или вспомогательное освещение и аварийное освещение. Запасное освещение несет функции общего освещения в случае аварийного отключения электроснабжения основной осветительной сети и обеспечивает проведение работ по восстановлению основного освещения или другого вида аварии. Резервирование электропитания производится за счет использования электрогенераторов, которые подают электроэнергию в том числе и на линию запасного освещения. По правилам должен быть гарантирован уровень освещенности не менее 10% от основного рекомендуемого рабочего освещения для данного вида деятельности.

Нормы аварийного освещения установлены следующими нормативными документами:

ГОСТ Р 55842-2013 (ИСО 30061:2007) Освещение аварийное. Классификация и нормы

Федеральный закон «Технический регламент о требованиях пожарной безопасности» от 22.07.2008 N 123-ФЗ (последняя редакция)

Федеральный закон «Технический регламент о безопасности зданий и сооружений» от 30.12.2009 N 384-ФЗ (последняя редакция)

СП 52.13330.2016 Естественное и искусственное освещение. Актуализированная редакция СНиП 23-05-95*

Аварийное освещение ПУЭ пункт. 6.1.23

Нормы уровня освещения

В помещениях и на территории конкретного объекта условия эксплуатации могут значительно различаться, это сказывается на показателе горизонтальной освещенности. Но в любом случае норма, которой придерживаются, следующая:

  1. выше 0,5 лк для обычных зон;
  2. выше 5 лк в зонах оказания медпомощи и у эвакуационных выходов;
  3. не менее 15 лк в зонах, где существует повышенная опасность.

Норма распространяется и на установку уличных светильников, если они предусмотрены проектом.

Аварийное освещение – мера необходимая для сохранения жизни людей в случае пропадания электрического питания от энергопоставляющей компании. Оно должно быть выполнено с соблюдением требований действующей нормативно-технической документации. Нужны грамотные специалисты и все должно быть смонтировано с соблюдением строительных норм и правил. Требования к эвакуационному освещению, в указанные в рабочем проекте должны неукоснительно соблюдаться, отклонений от него не должно быть. Этим обеспечивается пожарная безопасность объекта.

Классификация аварийного освещения

Аварийное освещение подразделяется на:

  • Освещение для спасательных путей; для возможности персонала и находящихся в помещении людей покинуть помещение, для этого требуется минимальная освещенность в размере минимум 1 Лк на каждые 0,2 м высоты, при этом желательная равномерность освещения не менее 1:40
  • Антипаническое освещение, предотвращающее панику во время отключения основного освещения, это как правило освещение запасных выходов из больших помещений. Включаться такое освещение должно незамедлительно после аварийного отключения основного освещения
  • Освещение безопасности (как правило применяется в крупных производственных помещениях с работающими станками), где при отключении освещения возникает опасность аварии и опасность для жизни и здоровья сотрудников производства.

Аварийное освещение нормы в жилых помещениях

  • Для промышленных зданий такой тип освещения следует организовывать если здание не имеет естественного освещения, если при исчезновении основного освещения продолжают работать механизмы. Освещение организуется по основным проходам если суммарное число персонала превышает 50 человек.
  • Аварийное освещение торговых залов — следует организовывать на лестничных пролетах и основных проходах если суммарное количество эвакуирующихся равно или превышает 50 человек. Кроме того, такое освещение должно быть в зданиях в которых одновременно могут находится более 100 человек, а также во всех торговых помещениях площадью более 90м2.
  • Аварийно-эвакуационное освещение необходимо устанавливать во всех детских, дошкольных и общеобразовательных учреждениях, спортивных, банных и лечебно-профилактических учреждениях.
  • В жилых зданиях данный тип аварийного освещения должен быть предусмотрен во всех зданиях высотой 6 и более этажей. Кроме того, согласно п.2.3 ВСН 59 — 8– эвакуационное освещение следует предусматривать в общежитиях с количеством проживающих 50 и более человек.

Приведем все требования к аварийному освещению

  • В аварийных же ситуациях эвакуационное освещение должно обеспечить освещенность достаточную для безопасной эвакуации людей. Согласно п.7.63 СНиП 23 – 05 – 95 для помещений эта норма составляет 0,5 Лк. Вне зданий аварийное освещение и нормы проектирования должны предусматривать освещенность не менее 0,2 Лк.
  • Для эвакуационного освещения важным аспектом является и разность между наиболее и наименее освещёнными участками. Ведь значительный перепад может дезориентировать человека. Поэтому введена норма, которая не допускает перепад между точками освещения более чем в 1/40.
  • Определенные нормы предъявляются и к расположению светильников. Так согласно п.6.1.23 ПУЭ световой указатель «Выход» должен быть расположен над каждым выходом из здания. Высота установки данного указателя должна быть не ниже 2 метров.
  • Светильники аварийного освещения должны быть расположены в коридорах через каждые 25 метров. Независимо от расстояния между светильниками они должны иметься на каждом повороте.

Обратите внимание! Пункт 7.65 СНиП 23 – 05 – 95. допускает использование вместо световых указателей надписи нанесенные на стену. Но в этом случае над каждой надписью должен иметься светильник, подключенный к сети эвакуационного освещения, который качественно освещает эту надпись.

Основные задачи

Автономные системы позволяют реализовать несколько важных функций:

  • Подсветка эвакуационных путей, выходов из здания;
  • Поддержание рабочих техпроцессов на производстве, если они представляют особую опасность при отключении электроэнергии.

Аварийное освещение входит в проект строительства аэропортов, больниц, детских учреждений, производственных участков повышенной степени опасности. Включение резервных источников питания происходит в случае повреждения основного рабочей осветительной системы здания.


Длительность работы светильников при этом варьируется в пределах 1-3 часов. Такого рода автономные системы целесообразно устанавливать во избежание нарушения режимов работы детских учреждений, возникновения взрыво- и пожароопасных ситуаций, а также сбоев в функционировании систем жизнеобеспечения.

Правила размещения аварийных светильников

Аварийные светильники размещенные в местах предполагаемой эвакуации, которые обеспечивают уровень освещенности в центре (по оси) эвакуационного прохода на уровне не менее 1 люкс. Светильники для освещения путей эвакуации также должны обеспечивать освещенность не менее 0,5 люкс на полосе размером не менее 50% ширины прохода, симметрично расположенной относительно оси прохода.

Данные уровни освещенности принимаются для двухметровой ширины прохода. Эвакуационные проходы с шириной более двух метров, можно рассматривать в виде нескольких двухметровых полос, либо применять к ним нормы для эвакуационного освещения открытых зон.

Схемы эвакуационного освещения

Эвакуационное освещение можно сделать тремя способами.

Первый, самый дорогой – провести напряжение к аварийным светильникам от независимого источника питания. Для этого нужно изначально на стадии проектирования заложить дополнительную проводку негорючими кабелями от щитовой.

При этом данные кабеля марки FRLS нельзя прокладывать в общих коробах с основным светом.

Более того, даже при скрытом монтаже их нужно закладывать в разные штробы!

подземный кабельный ввод

Кроме этого, само здание должно иметь второе питание от другой подстанции и независимого источника эл.снабжения.

Как понимаете, выполнить такие пункты в 90% случаев не реально.

Второй способ – генератор или сборка АКБ.

К светильникам опять же нужно подвести независимую проводку, установить шкаф АВР, купить этот самый генератор, постоянно следить за его состоянием и заниматься обслуживанием.

Лишних хлопот тоже хватает.

Третий способ, самый оптимальный – маленькие аккумуляторные батареи, как независимый источник питания каждого светильника.

Они могут быть как встроенными, так и выносными.

Минус здесь один – срок службы АКБ. По факту, продолжительную работу свыше 2-х лет, у аккумуляторов встречаешь очень редко.

Поэтому заранее приготовьтесь к их обязательной периодической замене.

Обратите внимание, большинство аварийных светильников со встроенными АКБ, подходят ТОЛЬКО для освещения путей эвакуации и организации антипанического света.

Для зон повышенной опасности и резервного освещения применяют другие способы. Например, резервное питание от дизельгенераторов, от сборных аккумуляторных стоек или отдельных линий независимого эл.снабжения.

То есть, с помощью обычных аккумуляторных светильников обеспечить требуемые нормы освещенности и выдержать необходимое время работы не получится.

Один большой аккумулятор или много маленьких?

Очень многие для небольших зданий и магазинчиков советуют применять универсальные блоки с одним большим аккумулятором.

Чаще всего такие используют для подключения систем охранно-пожарной сигнализации и видеонаблюдения.

подключение видеонаблюдения своими руками

Вроде бы все логично, купил одну такую штуку, подключил через нее максимальное количество лампочек, видеонаблюдение, сигнализацию и сэкономил кучу денег.

Через них даже запитывают обычные светодиодные потолочные споты U=12V и мощностью 4-5Вт.

почему нельзя применять точечные светильники при освещении квартиры

То есть, вам предлагают даже не покупать специальные светильники. Однако будут ли такие споты соответствовать требованиям по испытательной температуре нагрева корпуса (850С), почему-то мало кто задумывается.

Аккумулятор к блоку продается отдельно. В некоторых версиях ставится реле, которое при выходе из строя АКБ начинает издавать непрерывный звенящий звук.

От такого источника теоретически можно подключить и светильники непостоянного действия. Для этого на выходе необходимо поставить промежуточное реле или контактор, который будет замыкать свои контакты и срабатывать при пропадании света (напряжения питания).

Однако вам будет тяжело выполнить требование включения аварийного светильника непостоянного действия при срабатывании системы автоматической пожарной сигнализации.

В целом ряде СП четко говорится о прямой взаимосвязи такого освещения с системой АПС.

В светильниках со встроенными БАП аккумулятор идет в каждом корпусе. Соответственно, при наличии даже в маленьком здании десяти и более точек аварийного эвакуационного освещения, рано или поздно менять АКБ придется везде.

При этом зачастую в дорогих светильниках ставят батареи, которые очень трудно заменить. В продаже попросту не найти подходящих. Поэтому люди и покупаются на такое, якобы универсальное решение.

Ставишь в щитовой один такой блок с АКБ максимально возможной емкости и запитываешь от него все что можно. Все было бы хорошо, если бы не одно НО.

Согласно ГОСТ 60598-22 независимые блоки аварийного питания в автономных светильниках должны находиться от самого светильника на удалении не более 1 метра!

А еще каждый аварийный светильник без функционала тестирования (выведенная кнопка ТЕСТ или разъем для группового опробывания через специальные реле) не пригоден к подобной эксплуатации.

Электрик регулярно должен делать обход и проверять работоспособность эвакуационного освещения. Плюс вести журнал проверок.

Поэтому построить разветвленную сеть эвакуационного освещения от одного такого универсального блочка, используя обычные маломощные светодиодные лампочки и при этом соблюсти все правила, не получится.

Проектирование электроустановки общего освещения

Для столярного цеха спроектировать установку электрического освещения, которое состоит из рабочего и аварийного освещения.

Исходные данные

Строительные габариты цеха:

длина — 18 м; ширина — 27 м; высота — 6 м;

строительный модуль — 9*6 м.

Коэффициенты отражения потолка, стен, расчетной поверхности или пола принимаем: rп = 30%, rс = 30%, rр = 10%.

Возможные источники питания электрических сетей: ТП 250-1000 кВЧА 380/220 В, длина питающей линии 50 м.

1. Светотехническая часть

1.1 Определение качественных и количественных показателей нормируемых показателей освещения

а) минимальная освещенность — Ен = 300 лк;

б) коэффициент пульсации — 15%

в) коэффициент запаса — Кз = 2;

г) расчетная нормируемая плоскость — Г = 0,8 м;

1.2 Выбрать источники света, типы светильников для рабочего и аварийного освещения, соответствующие условиям окружающей среды

Окружающая среда в столярном цехе пыльная. В качестве осветительных приборов для общего рабочего освещения выбираем светильники для производственных помещений типа ГСП15 с металлогалогеновыми лампами типа ДРИ, с кривой силы света (КСС) — Г2 и КПД светильника — 60% (ηсв=0,6), степень защиты светильника — IP54.

Для общего рабочего освещения к установке в светильниках намечаем лампы типа ДРИ 400 мощностью 400 Вт со световым потоком Фном = 34000 лм. Напряжение питания — 220 В

1.3 Расчет количества светильников и размещение их на плане

Определяем расчетную высоту:

где H = 6 м — высота помещения;

hсв = 0,4 м — высота свеса;

hрп = 0,8 м — высота рабочей поверхности;

h = 6 — 0,4 — 0,8 = 4,8 м.

На основании индекса помещения i = 2,25, КСС — Г-2 и коэффициентов отражения ρп = 30%, ρс = 10%, ρр = 10% по таблице 13 [8] выбирают коэффициент полезного действия помещения 90% (ηп = 0,9).

Коэффициент использования осветительной установки:

Общее количество светильников для проектируемой установки:

где S — площадь помещения (18∙27 = 486 м2),

n — число ламп в светильнике;

z = 1,15 — для ламп типа ДРИ.

Минимальное и максимальное расстояние между светильниками для светильников с КСС типа Г-2 по таблице рекомендуемых значений λ = (0,8 — 1,1).

L1 = 4,8 ∙ 0,8 = 3,84 м;

L2 = 4,8 ∙ 1,1 = 5,28 м;

Значение L2 = 5,28 м получилось близкое к проектному расстоянию между светильниками по длине помещения, поэтому светильники намечаем разместить на фермах через 5 метров. Значение L1 = 3,84 м соответствует расстоянию между светильниками по ширине. Так предполагаем 4 ряда светильников по 5 светильников в каждом.

Проверяем, укладывается ли расчетное количество светильников в допустимые значения ( — 5% — + 10%) N.

Количество светильников по расчету и по расположению совпадают.

Окончательно принимаем 20 светильников размещенных в 4 ряда, по 5 штук в каждом ряду. Наносим светильники на план цеха.

Количество светильников аварийного освещения для эвакуации людей составляет (10-15)% от количества светильников рабочего освещения.

Nab = 20 ∙ 0,15 = 3 шт.

2. Электротехнический расчет

Так как светильники с газоразрядными лампами типа ДРИ и помещение пыльное то выполняется трехфазная питающая сеть типа ТN-С напряжением 380/220 В (3 фазы, нулевой рабочий проводник N) медным четырехжильным кабелем. Групповая сеть освещения выполняется трехфазной типа TN-S напряжением 380/220 В медным пятижильным кабелем (3 фазы, нулевой рабочий проводник N, нулевой защитный проводник PE — для заземления корпусов светильников)

Для групповой сети с учетом требования ограничения коэффициента пульсации принимаем пятипроводную сеть напряжением 380/220В.

Для рабочего освещения выбирается щиток освещения типа ПР11 с типом вводного аппарата А3710Б на ток от 160 А с трехполюсными выключателями распределения серии АЕ2046 на Iн = 63 А. Конструктивное исполнение шкафа — напольное со степенью защиты IР54.

Проектирование электроустановки общего освещения

Проектирование электроустановки общего освещения

Рис2. Схема групповой сети рабочего освещения столярного цеха

2.1 Расчет сечения проводников групповой сети по нагреву, потере напряжения и условиям защиты

Проверяем, на сколько равномерно по трем фазам распределены светильники:

где NА — количество светильников в группе, подключенных к фазе А;

Рл — мощность лампы, кВт

Кпра — коэффициент, учитывающий потери мощности в пускорегулирующей аппаратуре;

Рр. фазы А = 2∙ 0,4 ∙ 1,1 = 0,88 кВт,

Рр. фазы В = 2∙ 0,4∙ 1,1 = 0,88 кВт,

Рр. фазы А = 1∙ 0,4∙ 1,1 = 0,44 кВт.

Вычисляем степень неравномерной нагрузки по фазам:

Найдем наиболее удаленную от щитка и наиболее загруженную группу

Рр. гр = NгрЧn ·РлЧКПРА,

Ргр = 5 * 0,4 *1,1 = 2,2 кВт.

Выбор сечений проводников по нагреву осуществляется по расчетному току Iр:

где cosj =0,5 — коэффициент мощности нагрузки.

Согласно ПУЭ от перегрузок необходимо защищать осветительные сети, так как они открыто проложены. Определяют ток комбинированного расцепителя автоматического выключателя осветительного щитка на группу:

Iрасц = 1,2 Ч Iр = 1,2 ∙ 6.69 = 8,03 А.

Принимают ближайшее стандартное значение Iрасч. ном = 10 А на групповой выключатель АЕ2046. По справочным данным для групповой сети принимаем пятижильный кабель с медными жилами сечением 1,5 мм2 марки ВВГ5х1,5, с допустимым током Iд = 17 А при прокладке кабеля в воздухе.

По условию выбора провода

При заданных номинальном напряжении сети и материале проводника

где с = 72 — коэффициент для медных проводов.

S — сечение данного участка сети, мм2;

SМ= Рр. гр ·l2 + Рр.3 ·l3/2 — сумма моментов участков сети, кВтЧм

где Рр. гр — расчетная мощность светильников наиболее удаленной группы, кВт;

l2 — длина кабеля от щитка освещения до наиболее удаленной группы, м;

l3 — длина кабеля большего участка группы, м;

l3/2 — так как светильники на участке распределены равномерно;

Рр.3 — расчетная мощность светильников, подключенных от большего участка группы, кВт.

2.2 Расчет сечения проводников питающей сети по нагреву, потери напряжения и условиям защиты

Определяем расчетную мощность рабочего освещения цеха

Рр = Руст · Кс ·КПРА,

где Кс — коэффициент спроса;

Руст — установленная мощность;

Для столярного цеха, Кс= 1,

Рр = 8 ·1 ·1,1 = 8.8 кВт.

Определяем расчетный ток питающей сети:

Данная питающая сеть должна быть защищена от токов КЗ и от перегрузки, поэтому определим расчетный ток комбинированного расцепителя автоматического выключателя:

Iрасц = 1,2 Ч Iр = 1,2 ∙ 26,77 = 32,13 А.

Примем по шкале ближайшее стандартное значение номинального тока I расц = 38 А. Принимаем четырехжильный кабель с медными жилами сечением 6 мм2

ВВГ 4х6мм2 с Iдоп = 38 А.

По условию выбора провода:

Условие защиты сети от перегрузки

Iдоп = 38 А і Iрасц = 80 А.

В целях обеспечения селективности защиты рекомендуется принимать не менее чем на 2 ступени большими тока последующего аппарата. Требование по обеспечению селективности защиты выполнено, так как номинальный ток расцепителя автомата питающей сети Iрасц = 80 А, а номинальный ток расцепителя автомата групповой сети Iрасц = 10А.

Рассчитаем питающую сеть на потерю напряжения и проверим выбранное сечение кабеля.

Суммарная потеря напряжения от низковольтного щита ТП до самого удаленного светильника составила

DU = DU пит + DU гр = 1.01 + 0,65 = 1,66%.

полная потеря напряжения:

где К = 1,05 — при сечении 2 — 16 мм2.

DU = 1,66 ∙ 1,05 = 1,74%,

что значительно меньше располагаемых потерь Dup = 4%.

Расчет сети аварийного освещения

Питание светильников аварийного освещения выполняется фазным напряжением 220 В переменного тока (фаза, нулевой рабочий проводник N, нулевой защитный проводник PE).

Для аварийного освещения принимается к установке светильники типа НСП11-500 с лампой накаливания мощностью 500 Вт. Степень защиты светильника — ΙΡ 60.

Для групповой сети аварийного освещения принимается трехпроводная сеть (фаза и нулевой рабочий проводник, а также добавляется нулевой защитный проводник PE для заземления корпусов светильников.

Для аварийного освещения принимается к установке щиток типа ЯОУ8501 с пакетным выключателем ввода серии ПВ3-60 и на одну отходящую линию с однополюсным автоматическим выключателем распределения серии АЕ1031 на ток 10 А. Конструктивное исполнение шкафа — навесное со степенью защиты IР54.

Расчетная мощность аварийного освещения:

Рр = Ncв∙Руст · Кс =0,5∙1,1∙3 =1,65 кВт,

Расчетный ток групповой сети аварийного освещения:

где cosj =1 — коэффициент мощности ламп накаливания.

Выбираем медный трехжильный кабель сечением 2,5 мм2 с поливинилхлоридной изоляцией и оболочкой без наружного покрова ВВГ3ґ2,5 с длительным допустимым током Iдоп = 25 А.

Iдоп ≥ Iном расц; 25А ≥ 10 А

1. Бурдочкин Ю.С., Парфенова Н.А. Электрическое освещение: Справочные материалы к курсовому и дипломному проектированию для студентов специальности 100400 всех форм обучения / Рубцовский индустриальный институт. — Рубцовск: РИО, 2001.

2. СНиП 23.05.93. Естественное и искусственное освещение. Нормы проектирования. — М.: Стройиздат, 1993.

3. Справочная книга по светотехнике / Под ред. Ю.Б. Айзенберга. — М.: Энергоатомиздат, 1983.

Поможем написать работу на аналогичную тему

Похожие рефераты:
  • Расчет электроснабжения станкостроительного завода

Станкостроительный завод: электроснабжение, графики нагрузок, центр электрических нагрузок, схема электроснабжения, мощность конденсаторных установок и трансформаторов, выбор напряжений, сетей завода и токов, экономическая часть и охрана труда.

Этапы проектирования электрического освещения коровника: выбор размещения светильников, расчет мощности осветительной установки в помещении электрощитовой (точечным методом), венткамеры, сечения проводов с учетом количества фаз и потерь напряжения.

Характеристика объекта. Классификация помещения. Характеристика окружающей среды производственного помещения. Степень защиты оборудования. Схема распределительной и питающей сети. Прокладка и монтаж внутрицеховой силовой сети и заземляющих устройств.

Компоновка конструктивной схемы сборного покрытия. Расчет пустотной панели с напрягаемой арматурой по предельным состояниям первой группы. Определение усилий от расчетных и нормативных нагрузок и прочности плиты по сечению, нормальному к продольной оси.

Анализ и расчет электрических нагрузок. Компенсация реактивной мощности. Выбор типа и числа подстанций. Расчет и питающих и распределительных сетей до 1000В, свыше 1000В. Расчет токов короткого замыкания. Расчет заземляющего устройства. Вопрос ТБ.

До недавнего времени светодиодные лампы являлись всего лишь электроприборами, сообщающими о том, что принтер включен или что на автоответчике есть сообщение.

Выбор и размещение горных машин и механизмов. Выбор осветительных трансформаторов. Проверка чувствительности защиты при коротком замыкании. Расчёт кабельной сети участка. Выбор станций управления, контактов и уставок их защиты. Расчёт кабельной сети.

Общая характеристика проектируемого цеха. Расчет электроосвещения. Расчет вентиляционной установки для цеха. Разработка схемы управления мостового крана. Расчет и построение графиков переходного процесса при пуске электродвигателя. Охрана труда.

Характеристика объекта электрификации, описание технологического процесса. Расчёт и выбор технологического оборудования, электродвигателей, освещения, аппаратуры управления и защиты, проводок. Требования безопасности при эксплуатации электрооборудования.

Методика расчета магнитной цепи синхронного генератора, выбор его размеров и конфигурации, построение характеристики намагничивания машины. Определение параметров обмотки, выполнение теплового и вентиляционного расчетов, сборного чертежа генератора.

Расчет веса частей бруса. Определение угла наклона сечения, для которого нормальное и касательное напряжения равны по абсолютной величине. Построение эпюров сечения, вычисление его диаметра. Определить передаточное отношение от входного колеса до водила.

Проведение выбора источника света, системы, вида, месторасположения, мощности освещения в помещении для содержания животных, котельной, на улице, в профилактории. Расчет напряжения питания осветительной установки, силовой аппаратуры, сечения проводов.

Классификация светильников по различным критериям, их категории и варианты оформления, представленные на современном рынке светотоваров. Разработка конструкции светильника и технология ее реализации. Расчёт материала и экономическое обоснование проекта.

Свет как один из важнейших параметров микроклимата, измерение его интенсивности. Выбор вида и системы освещения в сельскохозяйственных помещениях, его обоснование. Виды освещения, их характеристика и отличительные черты, использование в разных помещениях.

Определение мощности электродвигателя приводной станции конвейера; кинематических, силовых и энергетических параметров механизмов привода. Расчет клиноременной передачи. Выбор основных узлов привода ленточного конвейера: редуктора и зубчатой муфты.

Расчет рационального варианта электроснабжения электромеханического цеха. Общие требования к электроснабжению. Выбор трансформаторов, аппаратов защиты и распределительных устройств, сечения шинопроводов и кабельных линий. Расчет токов короткого замыканий.

Взрывозащищенные светодиодные светильники, степень защиты, применение на взрывоопасных промышленных объектах. Освещенность и эффективная площадь засветки уличным светодиодным светильником в зависимости от высоты подвеса, технические характеристики.

Технические характеристики механизмов крана, режимы их работы. Требования, предъявляемые к электроприводам мостового крана. Расчет мощности и выбор электродвигателей привода, контроллера для пуска и управления двигателем, пускорегулирующих сопротивлений.

Выбор схемы выпрямления, основные параметры выпрямителя. Катушка трансформатора с первичной и вторичной обмотками из изолированного провода. Значения тока тиристора в зависимости от номинального выпрямленного тока. Расчёт КПД сварочного выпрямителя.

Рекомендации по экономии электроэнергии в электроприводе вентиляционной установки. Мероприятия по электробезопасности и охране труда. Методика выбора и проверки пускозащитной аппаратуры электродвигателя, провода и кабеля для питания электроприемеников.

ПУЭ 7. Правила устройства электроустановок. Издание 7

6.1.21. Аварийное освещение разделяется на освещение безопасности и эвакуационное.

Освещение безопасности предназначено для продолжения работы при аварийном отключении рабочего освещения.

Светильники рабочего освещения и светильники освещения безопасности в производственных и общественных зданиях и на открытых пространствах должны питаться от независимых источников.

6.1.22. Светильники и световые указатели эвакуационного освещения в производственных зданиях с естественным освещением и в общественных и жилых зданиях должны быть присоединены к сети, не связанной с сетью рабочего освещения, начиная от щита подстанции (распределительного пункта освещения) или, при наличии только одного ввода, начиная от вводного распределительного устройства.

6.1.23. Питание светильников и световых указателей эвакуационного освещения в производственных зданиях без естественного освещения следует выполнять аналогично питанию светильников освещения безопасности (п. 6.1.21).

В производственных зданиях без естественного света в помещениях, где может одновременно находиться 20 человек и более, независимо от наличия освещения безопасности должно предусматриваться эвакуационное освещение по основным проходам и световые указатели «выход», автоматически переключаемые при прекращении их питания на третий независимый внешний или местный источник (аккумуляторная батарея, дизель-генераторная установка и т.п.), не используемый в нормальном режиме для питания рабочего освещения, освещения безопасности и эвакуационного освещения, или светильники эвакуационного освещения и указатели «выход» должны иметь автономный источник питания.

6.1.24. При отнесении всех или части светильников освещения безопасности и эвакуационного освещения к особой группе первой категории по надежности электроснабжения необходимо предусматривать дополнительное питание этих светильников от третьего независимого источника.

6.1.25. Светильники эвакуационного освещения, световые указатели эвакуационных и (или) запасных выходов в зданиях любого назначения, снабженные автономными источниками питания, в нормальном режиме могут питаться от сетей любого вида освещения, не отключаемых во время функционирования зданий.

6.1.26. Для помещений, в которых постоянно находятся люди или которые предназначены для постоянного прохода персонала или посторонних лиц и в которых требуется освещение безопасности или эвакуационное освещение, должна быть обеспечена возможность включения указанных видов освещения в течение всего времени, когда включено рабочее освещение, или освещение безопасности и эвакуационное освещение должны включаться автоматически при аварийном погасании рабочего освещения.

6.1.27. Применение для рабочего освещения, освещения безопасности и (или) эвакуационного освещения общих групповых щитков, а также установка аппаратов управления рабочим освещением, освещением безопасности и (или) эвакуационным освещением, за исключением аппаратов вспомогательных цепей (например, сигнальных ламп, ключей управления), в общих шкафах не допускается.

Разрешается питание освещения безопасности и эвакуационного освещения от общих щитков.

6.1.28. Использование сетей, питающих силовые электроприемники, для питания освещения безопасности и эвакуационного освещения в производственных зданиях без естественного освещения не допускается.

6.1.29. Допускается применение ручных осветительных приборов с аккумуляторами или сухими элементами для освещения безопасности и эвакуационного освещения взамен стационарных светильников (здания и помещения без постоянного пребывания людей, здания площадью застройки не более 250 м 2 ).

Расчет нагрузки и потере напряжения осветительных сетей

Подробные расчеты, с примерами, представлены в разделе меню «Электроснабжение»
Установленная мощность освещения Ру складывается из мощности всех ламп, питаемых соответствующим участком сети. Если источник света — люминесцентные лампы, то дополнительно добавляются потери в ПРА — 25 % к мощности ламп. Расчетная нагрузка освещения питающей сети и вводов зданий определяется по формуле

где
Ксо — коэффициент спроса, значения его в зависимости от установленной мощности рабочего освещения зданий приведены ниже:

Значение коэффициента спроса
Ксо10,950,90,850,80,750,70,650,6
Мощность, кВт500

При расчете групповой сети рабочего освещения, питающих и групповых сетей эвакуационного и аварийного освещения зданий, освещения витрин и световой рекламы коэффициенты спроса принимаются равными 1.
Расчетная нагрузка (в киловаттах) питающих линий и вводов в рабочем и аварийном режиме при совместном питании силовых электроприемников и освещения

где
k — коэффициент, учитывающий несовпадение расчетных максимумов нагрузок силовых электроприемников, включая холодильное оборудование и освещения:

Коэффициент k для зданий:
без кондиционирования воздуха10,950,90,951
с кондиционированием воздуха10,850,750,851
Отношение расчетной осветительной нагрузки к силовой, %250

— расчетная нагрузка освещения, кВт;
— расчетная нагрузка силовых электроприемников без холодильных машин, систем кондиционирования воздуха, кВт;
— расчетная нагрузка холодильного оборудования, систем кондиционирования воздуха, кВт.
Так же расчетная нагрузка питающей осветительной сети определяется умножением установленной мощности ламп на коэффициент спроса kc.
При отсутствии данных обследований kc следует принимать равным:
1 — для мелких производственных зданий и торговых помещений, наружного освещения;
0,95 — для производственных зданий, состоящих из отдельных крупных пролетов;
0,9 — для библиотек, административных зданий и предприятий общественного питания;
0,8 — для производственных зданий, состоящих из большого числа отдельных помещений;
0,6 — для складских зданий и электроподстанций, состоящих из большого числа отдельных помещений.
При расчете групповой сети и всех звеньев сети аварийного освещения kс принимается равным 1.

Расчет сети по току нагрузки

Для определения минимально допустимого сечения проводов необходимо определить расчетные токи, которые для трехфазной сети с нулем составляют:

  • для двухпроводной (однофазной) линии

  • для трехпроводной двухфазной (две фазы и нуль) линии

  • для четырехпроводной трехфазной (три фазы и нуль) линии

где
Р — активная расчетная нагрузка (включая потери в ПРА газоразрядных ламп) 1, 2 или 3 фаз, кВт;
— фазное напряжение, В;
— линейное (междуфазное) напряжение, В;
cosφ — коэффициент мощности нагрузки.
Для сетей освещения с лампами накаливания коэффициент мощности равен 1, для сетей с люминесцентными лампами, с компенсацией реактивной мощности 0,95, а без конденсаторов в схемах — 0,57. Применение светильников с люминесцентными лампами с нескомпенсированными ПРА не допускается.

Расчет сети по потере напряжения

При расчете осветительных сетей по потере напряжения для неиндуктивной и индуктивной нагрузки без учета реактивной составляющей обычно следует пользоваться таблицами моментов, составленных на основе формулы:

где
М — момент нагрузки, равный произведению нагрузки на длину линии, кВт⋅м;
С — коэффициент, зависящий от системы, напряжения в ней и материала проводов;
— потеря напряжения, %.
В связи с широким использованием газоразрядных ламп требуется учитывать реактивную составляющую потери напряжения, влияние которой на общую потерю напряжения при низких значениях коэффициента мощности довольно велико.
Полная потеря напряжения при индуктивной нагрузке

где
— активная составляющая потери напряжения, определяемая по таблицам моментов;
-поправочный коэффициент, учитывающий реактивную составляющую потери напряжения;

голоса
Рейтинг статьи
Читайте так же:
Сечение кабеля по току 48в
Ссылка на основную публикацию
Adblock
detector