Ele-prof.ru

Электро отопление
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Нормы сопротивления изоляции кабеля связи

Нормы сопротивления изоляции кабеля связи

Измерение величины сопротивления изоляции кабеля связи с металлическими токопроводящими жилами производится с целью определения его работоспособности. От данного показателя в том числе зависит качество передаваемого по проводникам сигнала. Результатом снижения сопротивления изоляции, как правило, становится появление помех на линии, что, в свою очередь, приводит к возникновению звуковых шумов (телефонная линия), снижению пропускной способности (цифровые системы передачи данных) или же полный обрыв сообщения.

Согласно ГОСТ 15125-92 измерение сопротивления изоляции кабеля связи должно осуществляться раз в 6 месяцев.

Нормы сопротивления изоляции кабеля связи

Электрические нормы кабелей связи определяют минимальные значения сопротивления внешней изоляции и изоляции жил, при которых кабельная продукция допускается к использованию. Величина сопротивления зависит от типа и предназначения кабеля.

Требования к значениям сопротивления изоляции вводимых в эксплуатацию кабелей приведены в ГОСТ 15125-92, ОСТ 45.01-98, ОСТ 45.83-96 и прочей нормативно-технической документации. Рассмотрим несколько примеров.

Нормы сопротивления изоляции кабелей связи, наиболее часто применяемых для строительства первичных сетей, ГТС и других линий (значения на 1 км длины кабеля, без оконечных / с оконечными устройствами):

• Кабели с трубчато-бумажной и пористо-бумажной изоляцией (ТГШп, ТБпШп, ТКпШп, ТСтШп и т. п.) — 8000/1000 МОм.
• Полиэтиленовая изоляция (марки — ТППэп, ТППэпБ, ТПВБГ, СТПАПП, СТПАППБГ и другие) — 6500/1000 МОм.
• Кордельно-бумажная изоляция (ТЗБ, ТЗБГ, ТЗКл, ТЗБн и т. п.) — 10000/3000 МОм.

Испытание кабелей связи

Измерение сопротивления изоляции кабеля связи также производятся согласно нормативным требованиям. При выполнении этой задачи важно учитывать текущую температуру и влажность воздуха. Все электрические параметры кабелей связи приводятся производителями при условии проведения испытаний при температуре +20 °С и длине кабельного изделия 1 км. Отклонение этих параметров от нормы приводит к увеличению или уменьшению показаний. Однако существуют простые формулы, позволяющие произвести перерасчет сопротивления в зависимости от температуры и длины.

Оборудование

Измерение сопротивления изоляции кабеля связи производится специальным прибором, называемым мегаомметром. Для определения нужной электрической величины данные устройства генерируют определенное напряжение (от 100 В и более).

На текущий момент используются две разновидности мегаомметров — цифровые и аналоговые. В первом случае для генерации напряжения используются электромеханические (ручные) генераторы и стрелочные индикаторы. Цифровые мегаомметры для генерации напряжения используют, как правило, гальванические элементы или аккумуляторные батареи. Результаты измерений выводятся на цифровое табло. Также некоторые модели мегаомметров не имеют собственного генератора тока и требуют подключения внешнего источника питания.

Для тестирования кабельных линий также широко применяются рефлектомеры, способные определять различные дефекты кабеля локационным (рефлектометрическим) методом. Принцип работы устройств следующий:

• На жилы тестируемого кабеля подаются коротковолновые электрические импульсы.
• При наличии в кабеле каких-либо дефектов, подаваемый импульс отражается от препятствия и возвращается обратно к прибору.
• Возвращенный сигнал улавливается датчиками рефлектомера, измеряется, анализируется, после чего результат измерений отображается на дисплее.

Таким образом, при помощи рефлектомеров можно обнаружить обрывы, короткие замыкания, перепутанные пары, плотную землю и другие дефекты, которые имеют место в том числе при повреждении изоляции кабеля.

Требования и методика испытания кабелей связи

Измерение параметров кабелей связи (изоляции) — процесс несложный, но требует соблюдения установленных нормативной документацией (в частности — ГОСТ 3345-76, ГОСТ 2990-78) требований. Если кратко:

• Перед проведением работ кабель должен быть обесточен и отсоединен от всех оконечных устройств и проводников (если это, например, кабель ГТС, испытываемые жилы отсоединяются от клемм распределительных щитков).
• Нельзя проводить испытания мегаомметром над кабелями, расположенными в непосредственной близости с другими электросистемами, т. к. генерируемое прибором напряжение способно создавать мощные электромагнитные поля, которые могут нарушить работу этих систем.
• Нельзя проводить испытания воздушных линий связи в грозу.
• Испытываемые проводники (жилы) должны быть заземлены.
• Отсоединять испытываемый проводник от «земли» можно только после его подключения к соответствующим клеммам мегаомметра (т. е. сначала подключается прибор, а только затем провода отсоединяются от «земли»).
• Перед выполнением и после проведения измерений проводник должен быть освобожден от остаточного тока путем короткого замыкания. Эта операция также выполняется над измерительными щупами мегаомметра.
• Для получения точного результата ток пропускается по испытываемому проводнику в течение (и не более!) 1 минуты. После проведения испытаний прибору и испытываемому проводнику дают «остыть» в течение 2 и более минут, если в соответствующей документации к мегаомметру и/или кабелю не приведены другие цифры.
• Все прочие требования к безопасности приведены в ГОСТ 2990-78.

Теперь рассмотрим процесс измерения сопротивления изоляции кабеля связи на примере коаксиальной пары без защитного экрана (будем измерять сопротивление изоляции жил). Согласно ГОСТ 2990-78, условная схема приложения напряжения к жилам кабеля выглядит следующим образом:

Условная рабочая схема:

Процесс проведения измерений:

• Сначала на мегаомметре устанавливают уровень выходного напряжения, который зависит от марки испытуемого кабеля (обычно для проверки кабелей связи достаточно подать напряжение в 500 В).
• После подачи напряжения в цепь мегаомметру потребуется около 1 минуты для проведения измерений. Если это стрелочный прибор, необходимо дождаться ее полной остановки, для этого мегаомметр должен находиться в неподвижном состоянии. В случае с цифровыми приборами делать это необязательно.
• При необходимости измерения проводят несколько раз. Как было сказано выше, перед каждой процедурой прибору дают «остыть» в течение примерно 2 минут (плюс-минус — зависит от характеристик мегаомметра).

Читайте так же:
Кабель питания выходной ток

На показания сильно влияет температура окружающей среды (чем она выше, тем ниже сопротивление и наоборот). Если ее значение отлично от +20 градусов, необходимо воспользоваться следующей «корректирующей» формулой:

R_(20 )– сопротивление изоляции кабеля (в нашем случае сопротивление изоляции жил) при +20 °С (указывается в паспорте к марке кабеля);

R_1 — сопротивление, полученное в результате измерений при температуре, отличной от +20 °С;

K — «корректирующий» коэффициент, позволяющий определить такое значение сопротивления изоляции, которое бы имело место при +20 °С (коэффициенты приведены в приложении к ГОСТ 3345-76).

Например, возьмем кабель КТПЗБбШп с полиэтиленовой изоляцией, первоначальное сопротивление которой (без оконечных устройств) составляет 5000 МОм. После измерения сопротивления жил при температуре в 15 °С получили результат, допустим, в 11 500 МОм. Согласно ГОСТ 3345-76, поправочный коэффициент «K» в случае с полиэтиленовой изоляцией жил составляет 0,48. Подставив это значение в формулу, имеем:

R_(20 )=0,48*12500=5520 (сопротивление при нормальных условиях)

По следующей формуле можно определить сопротивление изоляции в зависимости от длины кабеля:

R_(20 )– сопротивление изоляции при +20 °С;

l — длина испытываемого кабеля;

Возьмем ту же марку кабеля ТППэпБбШп длиной в 1,5 км. Нам известно первоначальное сопротивление изоляции жил при нормальных условиях — 5000 МОм. Отсюда:

R=5000* 1,5=7500 МОм

Компания «Кабель.РФ ® » является одним из лидеров по продаже кабельной продукции и располагает складами, расположенными практически во всех регионах Российской Федерации. Проконсультировавшись со специалистами компании, вы можете приобрести нужную вам марку кабеля связи по выгодным ценам.

Методика измерения сопротивления изоляции

Настоящая методика предназначена для производства измерений сопротивления изоляции комплектных низковольтных устройств — ВРУ, щитов электрических сетей и других в соответствии с пунктом 1.8.34 (п.1) ПУЭ при испытаниях электроустановок потребителей с целью оценки качества изоляции элементов электроустановки. Сопротивление изоляции должно быть не менее 0,5МОм.
Значения наименьших допустимых сопротивлений изоляции аппаратов, вторичных це¬пей и электропроводки до 1000В приведены в табл.1.

Сопротивление изоляции, МОм

Вторичные цепи управления,

сигнализации в релейно-

контакторных схемах установок

напряжением до 1 кВ

Испытания производятся со всеми присоединенными аппа­ратами (магнитные пускатели,

контакторы, реле, приборы и т.п.)

Цепи бесконтактных схем сис­ темы регулирования и управле­ ния. а также присоединенные к ним элементы

По данным завода-изготовителя

Цепи управления, защиты и воз­ буждения машин постоянного тока напряжением до 1,1 кВ, присоединенных к цепям глав­ного тока

Силовые и осветительные элек­ тропроводки

Испытания производятся до вворачивания ламп с присоеди­нением нулевого провода к кор­ пусу светильника. Изоляция из­ меряется между проводами и относительно земли

Распределительные устройства, щиты и токопроводы напряже­нием до 1 кВ

Испытания производят для каж­дой секции распределительного устройства

Измерение сопротивления изоляции силовых кабельных линий производится мегаом-метром на напряжении 2500В, Для силовых кабелей до 1000В сопротивление изоляции должно быть не менее 0,5 МОм.

Комплект приборов и принадлежностей:

  • прибор ЭСО202/2-Г(ЭСО202/1-Г);
  • комплект соединительных проводов;
  • указатель напряжения.

2. МЕТОД И СРЕДСТВА ИЗМЕРЕНИЯ

Измерение сопротивления изоляции производится прибором ЭСО202/2-Г(ЭСО202/1-Г). Мегаомметр предназначен для измерения сопротивления изоляции электрических цепей, не нахо­дящихся под напряжением и измерения действующего значения переменного или величины постоянного напряжения на измеряемом объекте. Прибор реализует метод логометрического измерения отношения напряжений, одно из которых определяется сопротивлением между все­ми изолированными элементами и проводами электроустановки и относительно «земли».

Мегаомметры классифицируются по выходному напряжению и пределам измерений. В табл.2 приведены отличительные признаки.

Выходное напряжение, В

3. УСЛОВИЯ ПРОВЕДЕНИЯ ИЗМЕРЕНИЙ

Измерения сопротивления изоляции проводятся при температуре окружающего воздуха от -30 о С до +40 о С относительной влажности до 90% при температуре 30 о С.

4. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

Перед измерениями убедиться в отсутствии напряжения на вводном рубильнике с по­мощью указателя напряжения, вывесить плакат «НЕ ВКЛЮЧАТЬ, РАБОТАЮТ ЛЮДИ!»; убе­диться в отсутствии людей, запретить находящимся вблизи лицам прикосновение к токоведу-щим частям.

При работе с прибором необходимо соблюдение межотраслевых правил по охране труда (правил безопасности) при эксплуатации электроустановок: обязательно наличие резиновых ковриков, предупредительных плакатов, индивидуальных средств защиты, инструмента, вре­менных ограждений (при необходимости).

Подготовку объекта и средств измерений следует выполнять при отсутствии на объекте измерений напряжения и остаточного заряда.

При измерениях и испытаниях вне помещений, вокруг объектов и средств испытаний следует установить временные ограждения. На ограждениях и в местах расположения частей объектов измерений следует вывешивать знаки безопасности с поясняющими надписями, со­гласно правил электробезопасности: «НЕ ВКЛЮЧАТЬ, РАБОТАЮТ ЛЮДИ!», «СТОЙ! НАПРЯЖЕНИЕ!»’. Измерение сопротивления изоляции необходимо производить так, чтобы объект испытаний находился в прямой видимости. Снимать знаки безопасности и разби­рать ограждения следует только после снятия испытательной нагрузки и остаточного заряда. Выполнение измерений во время грозы или при ее приближении запрещено.

Читайте так же:
Схема светодиод от розетки

При работе с мегаомметром запрещается прикасаться к токоведущим частям, к которым он присоединен. После окончания работы снять остаточный заряд с проверяемого оборудова­ния посредством его кратковременного заземления.

5. ТРЕБОВАНИЯ К ПЕРСОНАЛУ

Измерения сопротивления изоляции проводится бригадой ЭТЛ численностью не менее двух человек с квалификационной группой по электробезопасности – не ниже III до 1000В из персонала лаборатории, обученных и аттестованных по данной методике, по знаниям ПОТЭЭ и ПТЭЭП. Все члены бригады обязаны иметь с собой удостоверение по электробезопасности.

Лица, допустившие нарушения ПОТЭЭ, ПТЭЭП, а также исказившие показания и точность измерений, несут ответственность в соответствии с законодательством РФ и Руководством по качеству электротехнической лаборатории.

6. ПРОВЕДЕНИЕ ИЗМЕРЕНИЙ СОПРОТИВЛЕНИЯ ИЗОЛЯЦИИ

Для присоединения мегаомметра к испытываемому объекту необходимо иметь гибкие провода с двойной изоляцией, с изолирующими ручками и ограничительным кольцом на концах. Длина проводов должна быть возможно меньшей. Сопротивление изоляции должно быть не менее 10МОм.

Перед проведением измерений необходимо:

  • проверить, на какое испытательное напряжение рассчитана изоляция каждого реле и аппа­ратов. и в случае наличия в цепях реле и аппаратов с пониженной изоляцией, полупровод­никовых элементов, стабилизаторов, неоновых ламп и других элементов принять меры по их вытаскиванию из колодок, а при невозможности их изъятия — закоротить;
  • снять плавкие вставки предохранителей во вторичных цепях;
  • все заземляющие концы проводов, установленных во вторичных цепях, отсоединить от «земли», корпуса панели, щита или оболочки кабеля;
  • тщательно очистить вторичные цепи от пыли и грязи.

После подготовки электроустановки к измерениям приступить к измерению сопротив­ления изоляции, для чего выполнить следующее.

  • снять крышку или извлечь мегаомметр из футляра и установите рукоятку генератора в ра­бочее положение; в исправном мегаомметре при вращении рукоятки с номинальной скоро­стью стрелка должна установиться на отметке «∞» шкалы «MΩ»;
  • установить перемычку между зажимами «MΩ» и «—»; в исправном мегаомметре при вра­щении рукоятки с номинальной скоростью стрелка должна установиться на отметке «О» шкалы «MΩ».
  • убедиться в отсутствии напряжения на объекте измерений с помощью указателя напряже­ния;
  • снять заряд путем предварительного заземления токоведущих частей электроустановки;
  • снять заземление после подключения мегаомметра к измеряемой цепи;
  • вращая ручку с номинальной скоростью, снять показания по шкале мегаомметра.

Результат измерения сопротивления изоляции мегаомметров ЭСО202/2-Г(ЭСО202/1-Г) может быть искажен поверхностными токами утечки объекта. Для уменьшения искажения результата измерений, на изоляцию испытуемой цепи накладывается токоотводящии электрод, который присоединяется к зажиму «Э» (рис.1).

Рис. 1. Схема присоединения мегаомметра к исследуемой цепи

В тех случаях, когда результат испытания изоляции объекта может быть искажен поверхностными токами утечки изоляции, надо принять меры, исключающие попадание t поверхностных токов в измерительную схему мегаомметра. Для этого на изоляцию объекта накладывается токоведущий электрод, который проводом присоединяется к зажиму мегаомметра «Экран» (на рис.1 показан пунктиром). Использование зажима «Экран» по­вышает точность измерения

При испытаниях объектов со значительной емкостью ручку генератора вращать со ско­ростью, несколько большей, чем 120об/мин. Отсчет произвести через 60с с момента начала вращения ручки и достижения устойчивого положения стрелки на шкале.

Методика измерения сопротивления изоляции проводов, кабелей, силового электрооборудования и аппаратов

Данная методика предназначена для производства измерений сопротивлений изоляции электропроводок, электрооборудования (комплектных низковольтных устройств: ВРУ, щитков этажных и квартирных, и др.), а также изолирующих полов и стен при сертификационных испытаниях электроустановок зданий с целью оценки качества изоляции элементов электроустановок и сравнения с нормами табл. 43 приложения 1 ПЭЭП и табл. 61 А стандарта МЭК 364-6-61. В соответствии с этими нормативными документами норма сопротивления изоляции цепей электроустановки должны быть не менее 0, 5 мОм

Измерения сопротивления изоляции должны производиться согласно п. 612. 3 стандарта МЭК 364-6-61:

а) между токоведущими проводниками, взятыми по очереди «два к двум»,

б) между каждым токоведущим проводником и «землей».

Измерения должны проводиться при отсоединенных электроприборах, при снятых предохранителях, вывернутых лампах и т. д.

Если цепь имеет электронные приборы, то должно быть сделано только измерение сопротивления изоляции между фазными и нейтральными проводниками, соединенными вместе, и «землей».

Примечание: эта мера предосторожности необходима, т. к. выполнение испытаний без соединения токоведущих проводников может вызвать повреждение электронных приборов.

При измерении параметров изоляции электрооборудования следует учитывать требования п. 1. 20 приложения 1 ПЭЭП.

В соответствии с п.413.3 ГОСТ Р 50571.3-94 изолирующие (непроводящие) помещения, зоны, площадки имеют целью предотвратить одновременное прикосновение к частям, оказавшимся под разными потенциалами в случае повреждения изоляции токоведущих частей.

Требования считаются выполненными, если пол и стены помещения являются изолирующими и выполняется одно или несколько условий приведенных ниже:

а) открытые проводящие части и сторонние проводящие части, а также открытые проводящие части друг от друга удалены не менее 2м, а за пределами зоны досягаемости — 1,25 м;

б) установлены эффективные приборы между открытыми проводящими частями и сторонними проводящими частями;

в) сторонние проводящие части изолированы. Сопротивление изолирующего пола и стен, измеренное в каждой точке должно быть не ниже:

— 50 кОм при номинальном напряжении электроустановок не выше 500. В;

Читайте так же:
Схема подключения выключателя с неоновой подсветкой

— 100 кОм при номинальном напряжении электроустановок выше 500 В.

В каждом помещении и для каждой поверхности в соответствии с п. 612.5 стандарта МЭК 364-6-61 должны быть сделаны три измерения. Одно измерение должно быть выполнено примерно в 1 м от сторонних проводящих частей, находящихся в помещении. Другие измерения должны быть сделаны на большем удалении.

Сопротивление изоляции практически во всех случаях измеряется мегаомметром — прибором, состоящим из источника напряжения — генератора постоянного (или переменного с выпрямителем) тока, измерительного механизма (магнитоэлектрического логометра) и добавочных резисторов.

В настоящее время наиболее распространены мегаомметры типа М4100 (пяти модификаций М4100/1-М4100/5).

Ф4101, Ф4102 — на номинальное рабочее напряжение 100, 500, 1000. В. и Ф. 4101, Ф4102 на напряжение 2500В. Мегаомметры серии Ф. 4100 — электронного типа с питанием от электросети (или 12В).

Мегаомметры выпуска последних лет; ЭС-0202/1Г (на 100, 250, 500 В) и ЭС0202/2Г (500, 1000 и 2500) сняты с производства, но допускаются к эксплуатации мегаомметры типа M l101 М, МС-05, МС-06.

Класс точности приборов должен быть не более 4.

Мегаомметры к схеме присоединяют гибкими одножильными проводами с сопротивлением изоляции не менее 100 Мом длиной 2-3 м, концы которых маркируются. Концы присоединяемые к мегаомметру должны иметь оконцеватели, а противоположные — зажимы типа «крокодил» с изолированными ручками или специальными щупами. При измерениях специальные провода не должны касаться друг друга, почвы, заземленных конструкций, оболочек кабелей.

При измерении сопротивления изоляции относительно земли зажимы «з» (земля) соединяются с заземленным корпусом аппарата, заземленной металлической оболочкой кабеля или с защитным заземлением, а зажим «л» (линия) -к проводнику тока (см. рис. 1.1. а, б, в). Схема замещения при измерении сопротивления изоляции фазы относительно земли и других заземленных фаз представлена на рис. 1.2.

1.1. Измерение сопротивления изоляции силовых кабелей и электропроводок

Перед началом измерения необходимо:

— убедиться, что на испытуемом кабеле нет напряжения;

— на 2-3 минуты заземлить токоведущие жилы для снятия с них возможных остаточных зарядов;

— тщательно очистить изоляцию от пыли и грязи.

Выбрать соответствующий предел измерений (в соответствии с ожидаемой величиной сопротивления изоляции) и подвергнуть мегаомметры контрольной проверке, которая заключается в проверке показаний на шкале при разомкнутых и замкнутых проводах. В первом случае стрелка должна находиться у отметки шкалы «Бесконечность» , во втором — у нуля.

Как правило, измеряется сопротивление изоляции каждой фазы кабеля относительно заземленных фаз (см. рис. 1.1 а, 1.2). Если измерения по этой схеме (сокращенный вариант — 3 замера) дадут неудовлетворительный результат, то необходимо измерить сопротивление изоляции каждой фазы относительно земли (остальные фазы не заземляются) — см. рис.1. З-х и между каждыми двумя фазами (см. рис. 1.36). Всего выполняется 6 замеров для 3-х жильных кабелей и соответственно 4 и 8 для 4-х жильных.

Значениями сопротивлений изоляции, измеренные по схемам рис. 1.3, ближе к действительным и должны удовлетворять требованиям норм

Вместе с записью результатов в отчетных документах необходимо указывать схему, с помощью которых они получены.

Измерения (снятие показаний), следует производить при устойчивом положении стрелки прибора. Для этого нужно вращать ручку прибора со скоростью 120 об/мин.

Сопротивление изоляции определяется показанием стрелки прибора через 15 и 60 с. после начала вращения.

Если определение коэффициента абсорбции К абс не требуется, отсчет показаний производится после успокоения стрелки, но не ранее 60 с. от начала вращения.

При неправильно выбранном пределе измерения, необходимо снять заряд с испытуемой фазы, наложив заземление, переключить предел и повторить измерение на новом пределе. При наложении и снятии заземления пользоваться диэлектрическими перчатками.

При измерениях сопротивления изоляции кабелей на напряжение до 100. В. с нулевыми жилами необходимо помнить следующее:

а) согласно п.п. 1.7.81, 2.1.35 ПУЭ «Нулевые рабочие и нулевые защитные проводники должны иметь изоляцию, равноценную изоляции фазных проводников»;

б) как со стороны источников питания, так и со стороны приемника нулевые проводники должны быть отсоединены от заземленных частей;

в) схема испытания изоляции аналогична указанным выше, различия лишь в количестве замеров (4 или 8 вместо 3 или 6) и в отсутствии необходимости использовать зажим «Экран» на мегаомметрах.

Измерение сопротивление изоляции силовых и осветительных электропроводок производится при снятом напряжении, выключенных выключателях, снятых предохранителях, отключенных электроприемниках, приборах, аппаратах, вывернутых электролампах.

1.2. Измерение сопротивления изоляции силового электрооборудования

Значение сопротивления изоляции электрических машин и аппаратов в большой зависит от температуры. Замеры следует производить при температуре изоляции не ниже +- 5°С кроме случаев оговоренных специальными инструкциями. При более низких температурах результаты измерения из-за нестабильности состояния влаги не отражают истинной характеристике изоляции.

Сопротивление изоляции класса «А» при понижении температуры на каждые 10°С увеличивается в полтора раза и наоборот. Сопротивление изоляции класса «В» при повышении температуры 10°С снижается примерно в два раза.

На основе этого «нормами испытания электрооборудования» определены коэффициенты (Кт — для электрических машин, Кз — для силовых трансформаторов) приведения результатов измерений к одной температуре, например, к данным завода-изготовителя.

Читайте так же:
Питающий кабель постоянного тока
Разность температур t2 – t1123451015202530
Коэффициент перерасчета1,041,081,131,171,221,51,842,252,753,4
  • t1 — температура, при которой производятся замеры на месте монтажа;
  • t2 — температура, при которой производились замеры на заводе-изготовителе.

Минимально допустимое сопротивление изоляции электроустановок перед вводом в эксплуатацию должно соответствовать величинам, установленным ПУЭ. Нормы сопротивления изоляции для установок, находящихся в: эксплуатации приведены в ПЭЭП.

Сопротивление изоляции у переносного электроинструмента (электромашин) измеряется относительно корпуса и наружных металлических частей при включенном выключателе.

Корпус электроинструмента и соединенные с ним детали, выполненные из диэлектрического материала, на время испытания должны быть обернуты металлической фольгой, соединенной с контуром заземления.

У переносных трансформаторов для электроинструмента измеряется сопротивление изоляции между всеми обмотками, а также между обмотками и корпусом. При измерениях первичной обмотки, вторичная должна быть закорочена и соединена с корпусом.

1.3.Проверки изоляции пола и стен

Проверке изоляции сопротивления пола и стен должна предшествовать работа по изучению и анализу проектной документации и документации предыдущих замеров и испытаний, а также работа по визуальному осмотру помещений подлежащих испытаниям.

1.3.1. Цель проверки.

Целью проверки изолирующих (непроводящих) помещений, зон, площадок является определение уровней сопротивления пола и стен относительно сторонних проводящих элементов и конструкций, находящихся в испытуемом помещении. Достаточный уровень сопротивления будет как мера защиты. Основной задачей этих мер будет предотвращение от одновременного прикосновения к частям, оказавшимся под разными потенциалами в случае повреждения основной изоляции токоведущих частей.

1.3.2. Методика проверки.

При необходимости выполнения требований п.413.3 для изолирующих (непроводящих) помещений, зон, площадок по крайне мере три измерения должно быть проведено в каждом помещении. Одно из измерений должно быть выполнено примерно в 1м от сторонних проводящих частей, находящихся в этом помещении. Два других проводятся на большем удалении. Эти замеры выполняются для каждой поверхности помещения.

В качестве источника постоянного тока используются мегаомметры с напряжением холостого хода 500В, где напряжение сети не превышает 500В., если напряжение сети превышает 500В., используется мегаомметр с напряжением холостого хода в 1000В.

Испытания желательно проводить до выполнения отделочных покрытий (лаки, краски и т.д.).

Электрод, при помощи которого производится измерение представляет собой квадратную металлическую пластину 250 х 250 мм., под которую подкладывается влажная водопоглощающая бумага или материя со стороной 270 х 270 мм. (Рис.3)

Измерительный электрод прижимается к полу с усилием 750Н, к стене 250Н.

Сопротивление изолирующего пола и стен измеренное в каждой точке, должно быть не ниже:

  • 50 кОм с номинальным напряжением электроустановки ниже 500В;
  • 100 кОм с номинальным напряжением электроустановки ниже 500В.

Изоляция сторонних проводящих предметов должна обладать достаточной механической прочностью и выдерживать испытательное напряжение 2000В переменного тока промышленной частоты, в течение 1 минуты. Измерение проводится также относительно элементов водоотопительных систем.

1.4. Некоторые особенности при работе с мегаомметром Ф4100.

Перед подключением прибора к питающей сети его необходимо заземлить.

Вывод заземления находится на передней панели прибора и имеет маркировку «┴». Его нельзя путать с аналогичным обозначением в измерительной схеме прибора («┴» — «Земля»).

После отпуска кнопки «Высокое напряжение» последнее снижается до безопасного значения за 5-10 с.

Работать с прибором необходимо в соответствии с указаниями заводской инструкции.

Мегаомметры Ф4102/1 и Ф4102/2 имеют питание от сети 220 В или от встроенных химических источников тока 10-14 В. Ресурс их в нормальных условиях достаточен для проведения не менее 250 измерений.

Мегаомметры Ф4100/1 и Ф4100/5 одного типа. У них вместо генераторов постоянного тока применены генераторы переменного тока с выпрямителем.

Имеется пять исполнений приборов этого типа, отличающихся по параметрам выходного напряжения и наибольшему значению измеряемого сопротивления.

1.5. Определение погрешности измерения

Замеренное прибором значение всегда отличается от его действительного значения т/е. всегда есть погрешность измерений.

Степень приближения измеренного значения к действительному характери­зует относительная погрешность, определяемая следующим выражением

YНВ=YДх(АН/А)

YНВ — наибольшая возможная относительная погрешность измерения;

YД — класс точности прибора — допустимое значение приведенной погрешности;

АН — верхний предел измерения прибора;

А — замеренная величина.

Дополнительная погрешность при отклонении прибора от рабочего горизонтального положения в пределах 10° учитывается в величине наибольшей относительной погрешности измерения YНВ, т.е. погрешность измерения удваивается.

Основная погрешность приборов М4100/3 и М4100/4 определяется выражением

YНВ=[1+((N/Rx)-1)]

N — верхний предел измерения прибора, кОм (Мом);

Rx — измеренное сопротивление изоляции, кОм (Мом).

Для других типов мегаомметров в выражении должен быть поставлен класс точности по паспортам.

Допустимое сопротивление изоляции

Одной из важнейших характеристик проводника является сопротивление. Особенно это важно для кабелей, которые могут иметь длину в несколько километров. Сопротивление зависит от материала и площади поперечного сечения провода. Отклонение сопротивления от нормы в большую или меньшую стороны влияет на потери энергии и безопасность системы.

Какое должно быть сопротивление изоляции кабеля и проводов

Минимальное значение этой характеристики измеренного напряжения должно быть выше номинального значения. Требуемое значение определяется производителем кабеля или электротехнического изделия в соответствии с текущими спецификациями. Существует несколько видов электротехнических изделий:

  • Универсальные.
  • Силовые.
  • Контрольные.
  • Распределительные.
Читайте так же:
Автоматический выключатель света gts 907

Делятся они не только по физическим характеристикам, но и по структуре. Например, кабели, предназначенные для прокладки под землей, армированы металлической лентой и состоят из нескольких слоев изоляционного материала. Измеряется сопротивление изоляции в омах. Однако поскольку значение индикатора велико, всегда используется приставка «мега». Указанное число рассчитывается для конкретной длины, обычно одного километра. Если длина менее 1000 метров, нужно выполнить пересчет. Для кабелей, используемых для передачи и передачи низкочастотных сигналов, сопротивление изоляции должно быть не менее 5000 МОм / км. Но для основной линии — более 10 МОм / км. В то же время минимальное требуемое значение всегда указывается в паспорте продукта.

Как правило, принимаются следующие спецификации сопротивления изоляции:

  • Кабели, размещенные в комнате с нормальными условиями окружающей среды, 0,50 Мом.
  • Электрические плиты, не используемые для передачи − 1 МОм.
  • Распределительные щиты, содержащие компоненты для распределения электроэнергии И магистральные линии − 1 МОм.
  • Изделия, обеспечивающие напряжение до 50 В — 0,3 МОм.
  • Двигатели и другое оборудование, работающее при напряжении 100-380 В, − 0,5 МОм.
  • Оборудование, подключенное к линиям электропередачи, предназначенное для передачи сигналов с максимальной амплитудой 1 кВ — 1 МОм.

Важно! Для кабелей, подключенных к силовой цепи, применяются немного другие характеристики. Следовательно, провода, используемые в электрической сети с напряжением, превышающим 1 кВ, должны иметь значение сопротивления не менее 10 МОм.

Для линий управления стандарт требует значения сопротивления не менее 1 МОм

Проверка сопротивления

Безопасность зависит от сопротивления. Поэтому важно регулярно измерять это значение для выявления отклонений. Кроме того, для промышленных объектов указаны обязательные циклы измерений. В соответствии с установленными нормами и правилами, проверки сопротивления изоляции проводов и кабелей должны проводиться:

  • Для мобильных или переносных установок не реже одного раза в шесть месяцев.
  • Для внешнего оборудования и наружных кабелей и более опасных помещений — не реже одного раза в год.
  • Во всех других случаях — каждые три года.

Как измерить сопротивление изоляции кабеля

Перед испытанием следует удалить остаточный заряд с отсоединенных токоведущих частей. Это делается путем подключения их к наземной шине. Снимается контактная перемычка только после подключения прибора-измерителя. В конце теста остаточный заряд снова снимается путем кратковременного замыкания на землю. Найти величину сопротивления можно двумя путями: либо с помощью расчета или таблицы, либо непосредственно с помощью приборов.

По таблице ПУЭ

Значения сопротивления зависят от поперечного сечения элемента, проводящего электрический ток, и материала, из которого он изготовлен.

Таблица для алюминиевого провода

Обычно это медь или алюминий. Основные значения указаны в таблице:

Таблица для медного провода

С помощью приборов

Как правило, оборудование, используемое для проведения измерений, делится на две группы: панельные измерители и мегомметры. Первый используется для мобильных или стационарных электрических установок с независимой нейтралью. Индикаторы и компоненты реле включены в типичную конструкцию оборудования контроля изоляции. Эти счетчики могут работать в непрерывном режиме и могут использоваться в сетях переменного тока напряжением 220 В или 380 В с разными частотами.

В большинстве же случаев измерение производится с помощью мегомметра. Он отличается от обычных омметров тем, что может работать при достаточно высоких значениях напряжения, генерируемых самим устройством. Существует два типа мегомметров:

  • Аналоговый.
  • Цифровой.

Стандартный мегомметр содержит три датчика. К ним подключаются: защитное заземление, измерительные провода, экранирование. Последний используется для устранения тока утечки.

Метод измерения можно выразить следующим образом:

  • В соответствии с требованиями, предъявляемыми к производственной линии, выбирается испытательное напряжение. Например, для домашней проводки значение устанавливается в диапазоне от 100 до 500 В.
  • При использовании цифрового устройства необходимо нажать кнопку «Тест», а на аналоговом устройстве поворачивать ручку, пока индикатор не покажет требуемое значение напряжения.
  • Линейный выход тестера подключить к испытательному сердечнику кабеля, а выход заземления к жгуту из остальных проводов. То есть каждый сердечник проверяется относительно остальных электрических проводов, электрически соединенных друг с другом.

Важно! Если полученные данные неудовлетворительные, каждая жила в кабеле проверяется отдельно.

  • Записать все полученные значения и сравнить их со спецификациями.

Меры безопасности

Один из основных принципов исследования изоляции — невозможно начать работу, не убедившись, что в зоне измерения нет напряжения. Оборудование, используемое для тестирования, должно быть сертифицированным. Должен использоваться мегомметр, выходное напряжение которого соответствует установленным стандартам. Поэтому для сетей или устройств с напряжением до 50 В будет использоваться тестер, который имеет значение в 100 В, в то время как устройства с более низкими значениями не смогут предоставить правдивую информацию о, а более мощные устройства могут вызвать повреждение цепи.

Измерение сопротивления важно для любого типа кабеля. От этого зависит безопасность работы всей электрической цепи. Проводится измерение специальным прибором, а затем результаты сравниваются с таблицей и данными, указанными в прикладной документации.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector