Ele-prof.ru

Электро отопление
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Основные определения и термины для радиоламп

Основные определения и термины для радиоламп

Сравнивая параметры и другие данные ламп — аналогов, установленные в стандартах и фирменных каталогах, необходимо учитывать возможные различия в терминологии, сложившейся в разных странах. Иначе это может привести к ошибкам при оценке взаимозаменяемости ламп. Чтобы избежать этого, ниже приведены краткие определения основных параметров и некоторых других использованных терминов.

Ряд определений дан в соответствии с официальным изданием МЭК — "Международным электротехническим словарем" (International Electrotechnical Vocabulary, 2 nd Edition, Group 07, Electronics).

В "Справочнике" в основном использованы термины, принятые в стандартах СССР. Лишь в отдельных случаях сделаны небольшие уточнения в наименованиях параметров и данных (это относится, в частности, к емкостям и некоторым предельным эксплуатационным данным).

Напряжение электрода (анода, сетки и т. д.) — разность потенциалов между электродом и катодом или определенной точкой катода прямого накала.

Запирающее напряжение сетки — напряжение сетки, уменьшающее ток анода до заданного (очень малого) значения.

Напряжение отсечки электронного тока сетки — напряжение, которое необходимо приложить к сетке, чтобы электронный ток сетки при соединенных с катодом всех остальных электродах был равен заданному значению.

Ток накала — ток, потребляемый подогревателем.

Ток катода — ток, равный алгебраической сумме токов всех других электродов и измеряемый в общей для всех этих электродов части внешней цепи.

Ток электронной эмиссии катода (ток эмиссии) — условная величина, соответствующая току катода лампы при специально заданных напряжениях на электродах.

Ток утечки — ток проводимости, протекающий между двумя или несколькими электродами по любому пути, но не через вакуумное пространство между этими электродами.

Крутизна характеристики — величина, характеризуемая отношением изменения тока анода к соответствующему изменению напряжения управляющей сетки при неизменных напряжениях анода, других сеток и накала:

Для многоэлектродных ламп крутизна характеристики определяется как отношение приращения тока любого электрода к изменению напряжения любого другого электрода, например крутизна по третьей сетке

Коэффициент усиления — отношение изменения напряжения анода к соответствующему изменению напряжения управляющей сетки при условии, что ток анода и напряжения на всех остальных электродах остаются неизменными:

Внутреннее сопротивление — отношение изменения напряжения анода к соответствующему изменению тока анода при неизменных напряжениях на остальных электродах:

Крутизна преобразования — отношение переменной составляющей тока анода промежуточной частоты к переменному напряжению сигнальной сетки при заданном переменном напряжении гетеродинной сетки:

Крутизна преобразования показывает, какую амплитуду тока промежуточной частоты в анодной цепи лампы создает напряжение сигнала амплитудой 1 В.

Выходная мощность — мощность, отдаваемая в нагрузку через выходной электрод лампы. Выходную мощность в режимах низкочастотного усиления определяют по значению мощности, выделяемой переменной составляющей тока анода на активной анодной нагрузке.

Коэффициент нелинейных искажений Kf — отношение выходной мощности, выделяемой на анодной нагрузке током гармоник, к выходной мощности, выделяемой на анодной нагрузке током основной частоты:

где U2, U3 — напряжения второй и третьей гармоник; U1 — напряжение основной частоты (первая гармоника).

Колебательная мощность — наибольшая мощность, которую можно выделить в анодной цепи лампы в телеграфном режиме (режим C) при номинальном напряжении накала и максимальном напряжении анода. Колебательная мощность определяется как разность между подводимой мощностью постоянного тока и мощностью, рассеиваемой анодом.

Мощность, рассеиваемая электродом (анодом, сеткой и пр.), — мощность, рассеиваемая электродом в виде тепла, образующегося в результате бомбардировки его электронами или ионами, а также в результате излучения тепла другими электродами.

Коэффициент широкополосности — отношение крутизны характеристики к сумме входной и выходной емкостей лампы:

Эквивалентное сопротивление шумов лампы — сопротивление резистора, на концах которого (при температуре 20 град. С) в результате тепловых колебаний электронов возникает напряжение шума, которое, будучи приложено между управляющей сеткой и катодом идеальной бесшумной лампы, вызывает в ее анодной цепи такой же ток шума, какой создается в реальной лампе.

Ток шума реальной лампы — колебания выходного тока лампы, вызванные дробовым эффектом (флюктуациями тока эмиссии, обусловленными статистическим характером и атомистической природой электрического заряда, при неизменной эмиттирующей поверхности).

Входное сопротивление лампы Rвх в диапазоне частот 30 — 300 МГц — активная составляющая полного входного сопротивления, измеренная между выводом входного электрода и "землей" при условии, что на всех электродах лампы установлены определенные напряжения питания, а высокочастотные напряжения на всех электродах, кроме входного, на данной частоте пренебрежимо малы.
Входное сопротивление уменьшается с увеличением частоты, шунтируя входной контур (т. е. уменьшаются усиление и избирательность контура).
Примечание. Полное входное сопротивление электронной лампы в диапазоне частот 30 — 300 МГц можно представить в виде параллельного соединения активного сопротивления Rвх и емкости Свх (см. рисунок):

где Zвх — полное входное сопротивление; — угловая частота.

Скважность — отношение длительности интервала времени между двумя соседними импульсами к длительности импульса.

Напряжение виброшумов — напряжение на нагрузке, включенной в цепь выходного электрода лампы, возникающее при вибрации лампы и обусловленное появлением переменной составляющей тока, вызванной изменениями междуэлектродных расстояний.

Наработка — продолжительность работы лампы; в "Справочнике" обычно указана минимальная наработка, установленная стандартами или другими официальными документами.

Критерии наработки — условно принятые параметры и их предельные значения, по которым производится оценка результатов испытаний на наработку.

Межэлектродные статические емкости (емкости между электродами лампы в холодном состоянии).

  • Входная — емкость между входным электродом и теми электродами и деталями лампы, на которых в рабочем режиме лампы практически нет переменных потенциалов частоты, которую имеет переменное напряжение, приложенное к входному электроду при заземленном выходном электроде.
  • Выходная — емкость между выходным электродом и теми электродами и деталями лампы, на которых в рабочем режиме лампы практически нет переменных потенциалов той частоты, которую имеет переменное напряжение на выходном электроде лампы при заземленном входном электроде.
  • Проходная — емкость между входным и выходным электродами при всех остальных электродах и деталях лампы, соединенных вместе и заземленных.

Межэлектродные емкости для триодов, тетродов и пентодов.

  • Входная — емкость между управляющей сеткой и остальными электродами и деталями лампы (кроме анода) при заземленном аноде.
  • Выходная — емкость между анодом и остальными электродами и деталями лампы (кроме управляющей сетки) при заземленной управляющей сетке.
  • Проходная — емкость между управляющей сеткой и анодом; при этом все остальные электроды и детали лампы соединены вместе и заземлены.

Межэлектродные емкости для триодов, тетродов, пентодов в каскадах с заземленной сеткой.

  • Входная — емкость между катодом и остальными электродами и деталями лампы (кроме анода) при заземленном аноде.
  • Выходная — емкость между анодом и остальными электродами и деталями лампы (кроме катода) при заземленном катоде.
  • Проходная — емкость между катодом и анодом при заземленных остальных электродах и деталях лампы, соединенных вместе.

Межэлектродные емкости для гептодов-преобразователей.

  • Входная — емкость между сигнальной сеткой и прочими электродами и деталями лампы.
  • Выходная — емкость между анодом и прочими электродами и деталями лампы.
  • Проходная — емкость между сигнальной сеткой и анодом; при этом все остальные электроды и детали лампы соединены вместе и заземлены.

Межэлектродные емкости гетеродина.

  • Входная — емкость между гетеродинной сеткой и прочими электродами и деталями лампы (кроме анода гетеродина) при заземленном аноде гетеродина.
  • Выходная — емкость между анодом гетеродина и прочими электродами и деталями лампы (кроме гетеродинной сетки) при заземленной гетеродинной сетке.
  • Проходная — емкость между гетеродинной сеткой и анодом гетеродина; при этом все прочие электроды и детали лампы соединены вместе и заземлены.
Читайте так же:
Розетка с проводом для люминесцентной лампы

Примечание. Во всех случаях под деталями лампы (кроме собственно электродов) понимаются подогреватель, экраны, свободные штырьки.

Материал подготовлен по данным [Б.В.Кацнельсон, А.С.Ларионов. Отечественные приемно-усилительные лампы и их зарубежные аналоги, М.:Энергоиздат, 1981, с. 21-24].

Сопротивление

Господа, и снова всем здрастье! Мы с вами уже обсудили ток. Обсудили и напряжение. Осталась последняя сторона бермудского треугольника. Как многие уже догадались, речь сегодня пойдет про электрическое сопротивление. Что же это такое? От чего зависит? Как его рассчитать? Обо всем этом речь пойдет в сегодняшней статье!

А начиналось все это достаточно давно. В далекие и лихие 1800-е уважаемый господин Георг Ом игрался в своей лаборатории с напряжением и током, пропуская его через различные штуки, какие только могли его проводить. Будучи человеком наблюдательным, он установил одну интересную зависимость. А именно, что если взять один и тот же проводник, то сила тока в нем прямо пропорциональна приложенному напряжению. Ну, то есть если увеличить приложенное напряжение в два раза, то в два раза возрастет и сила тока. Соответственно, никто не мешает взять и ввести какой-нибудь коэффициент пропорциональности:

Где G – это и есть коэффициент, который называется проводимостью проводника. На практике же чаще люди оперируют с величиной, обратной проводимости. Она называется как раз-таки электрическое сопротивление и обозначается буковкой R:

Для случая электрического сопротивления, зависимость, полученная Георгом Омом выглядит так:

Господа, по большому секрету, мы только что написали закон Ома. Но не будем пока на этом концентрироваться. Для него у меня уже практически готова отдельная статья, в ней и поговорим об этом. Сейчас же более подробно остановимся именно на третьей составляющей этого выражения – на сопротивлении.

Во первых, это характеристика проводника. Сопротивление не зависит от тока с напряжением, кроме отдельных случаев типа нелинейных устройств. До них обязательно доберемся, но позже, господа. Сейчас мы рассматриваем обычные металлы и прочие милые и простые – линейные – штуки.

Измеряется сопротивление в Омах. Вполне логично – кто открыл, тот и назвал в честь себя. Отличный стимул для открытий, господа! Но помните, мы начали с проводимости? Которая у нас обозначается буковкой G? Так вот, она тоже имеет свою размерность – Сименсы. Но обычно на это всем пофиг, с ними почти никто не работает.

Пытливый ум непременно задастся вопросом – сопротивление, это конечно здорово, а от чего оно, собственно говоря, зависит? Ответы имеются. Давайте по пунктам. Опыт показывает, что сопротивление зависит по крайней мере от:

  • геометрических размеров и формы проводника;
  • материала;
  • температуры проводника.

А теперь давайте подробнее по каждому из пунктов.

Господа, опыт показывает, что при постоянной температуре сопротивление проводника прямо пропорционально его длине и обратно пропорционально площади его поперечного сечения. Ну, то есть чем проводник толще и короче, тем меньше его сопротивление. И наоборот, длинные и тонкие проводники имеют относительно высокое сопротивление. Это иллюстрирует рисунок 1. Данное утверждение понятно и по уже приводимой ранее аналогии электрического тока и водопровода: через толстую короткую трубу воде течь легче, чем через тонкую и длинную и возможна передача больших объемов жидкости за то же самое время.

сопротивление, электрическое сопротивление, толщины проводника

Рисунок 1 – Толстый и тонкий проводники

Выразим это математическими формулами:

Здесь R – сопротивление, l – длина проводника, S – площадь его поперечного сечения.

Когда мы говорим, что кто-то кому-то пропорционален, всегда можно ввести коэффициент и заменить значок пропорциональности на значок равенства:

Как видим, здесь у нас появился новый коэффициент . Он называется удельным сопротивлением проводника.

Что же это такое? Господа, очевидно, что это то значение сопротивления, которое будет иметь проводник длиной 1 метр и площадью поперечного сечения 1 м 2 . А что там с его размерностью? Выразим из формулы:

Величина это табличная и она зависит от материала проводника.

Таким макаром мы плавно перешли ко второму пункту нашего перечня. Да, два проводника одинаковой формы и размеров, но из разного материала будут иметь разное сопротивление. И обусловлено это исключительно тем, что у них будет разное удельное сопротивление проводника. Приведем табличку со значением удельного сопротивления ρ для некоторых широко распространенных материалов.

удельное сопротивление

Господа, видим, что меньше всех сопротивляется электрическому току у серебра, а у диэлектриков напротив, оно весьма большое. Это и понятно. Диэлектрики на то и диэлектрики, что бы ток не проводить.

Теперь, используя приведенную мною табличку (или гугл, если там нет нужного материала) вы легко сможете рассчитать себе провод с необходимым сопротивлением или же оценить, какое сопротивление будет у вашего провода с заданными площадью сечения и длиной.

Помнится, в моей инженерной практике был один подобный случай. Мы делали мощную установку для питания лампы накачки лазера. Мощности там были какие-то просто сумасшедшие. И для поглощения всей этой мощности на случай «если что-то пойдет не так », было принято решение изготовить резистор сопротивлением 1 Ом из какой-нибудь надежной проволоки. Почему именно 1 Ом и куда именно он устанавливался, мы сейчас не будем рассматривать. Это разговор для совсем другой статьи. Достаточно знать, что этот резистор должен был в случае чего принять в себя десятки мегаватт мощности и десятки килоджоулей энергии и желательно остаться при этом живым. Проштудировав списки доступных материалов, я выбрал два: нихром и фехраль. Они были жаростойкими, выдерживали высокие температуры, а кроме того обладали относительно высоким удельным электрическим сопротивлением, что позволяло с одной стороны брать не очень тонкие (они сразу перегорят) и не очень длинные (надо было влезть в разумные габариты) провода, а с другой – получить требуемые 1 Ом. В результате итеративных расчетов и анализа предложений рынка проволочной промышленности России (вот так термин), я-таки остановился на фехрали. Получилось, что проволока должна иметь диаметр несколько миллиметров и длиной в единицы метров. Точные цифры называть не буду, они мало кому из вас будут интересны, а мне лень искать эти выкладки в недрах архива. Был также рассчитан перегрев проволоки на случай (по формулам термодинамики), если действительно через нее пропустить десятки килоджоулей энергии. Он получился пара сотен градусов, что нас устраивало.

В заключении скажу, что данные самодельные резисторы были изготовлены и успешно прошли испытания, что подтверждает правильность приведенной формулы.

Однако мы слишком увлеклись лирическими отступлениями о случаях из жизни, совершенно забыв, что нам надо еще рассмотреть зависимость электрического сопротивления от температуры.

Давайте порассуждаем – а как теоретически может зависеть сопротивление проводника от температуры? Что нам известно про повышением температуры? Как минимум два факта.

Первое: с ростом температуры все атомы вещества начинают быстрее колебаться и с большей амплитудой. Это приводит к тому, что направленный поток заряженных частиц чаще и сильнее сталкивается с неподвижными частицами. Одно дело пробраться через толпу людей, где все стоят, и совсем другое – через такую, где все бегают, как сумасшедшие. Из-за этого средняя скорость направленного движения уменьшается, что эквивалентно уменьшению силы тока. Ну, то есть к росту сопротивления проводника току.

Читайте так же:
Замена выключателя контрольной лампы включения стояночного тормоза

Второе: с ростом температуры увеличивается число свободных заряженных частиц в единице объема. Из-за большей амплитуды тепловых колебаний атомы легче ионизируются. Больше свободных частиц – больше сила тока. То есть сопротивление падает.

Итого в веществах с ростом температуры борются два процесса: первый и второй. Вопрос в том, кто победит. Практика показывает, что в металлах чаще победу одерживает первый процесс, а в электролитах – второй. Ну, то есть у металла сопротивление с ростом температуры растет. А если взять электролит (например, водичку с раствором медного купороса), то в нем сопротивление уменьшается при росте температуры.

Возможны случаи, когда первый и второй процессы полностью уравновешивают друг друга и сопротивление практически не зависит от температуры.

Итак, сопротивление имеет свойство меняться в зависимости от температуры. Пусть при температуре t1, было сопротивление R1. А при температуре t2 стало R2. Тогда что для первого случая, что для второго, можно записать следующее выражение:

Величина α, господа, называется температурным коэффициентом сопротивления. Этот коэффициент показывает относительное изменение сопротивления при изменении температуры на 1 градус. Например, если сопротивление какого-либо проводника при 10 градусах равно 1000 Ом, а при 11 градусах – 1001 Ом, то в этом случае

Величина это табличная. Ну то есть зависит от того, что именно за материал перед нами. Для железа, например, будет одно значение , а для меди – другое. Ясно, что для случая металлов (сопротивление с ростом температуры растет) α>0, а для случая электролитов (сопротивление с ростом температуры падает) α<0.

Господа, у нас за сегодняшний урок есть уже аж две величины, которые влияют на результирующее сопротивление проводника и при этом зависят от того, что же это за материал перед нами. Это ρ, которое удельное сопротивление проводника и α, которое температурный коэффициент сопротивления. Логично попытаться их свести между собой. Так и сделали! Что же в итоге получилось? А вот это:

Величина ρ не совсем однозначная. Это значение удельного сопротивления проводника при Δt=0. А поскольку не привязана ни к каким конкретным цифрам, а целиком и полностью определяется нами – пользователями – то и ρ получается тоже относительная величина. Оно равно значению удельного сопротивления проводника при некоторой температуре, которую мы примем за нулевую точку отсчета.

Господа, возникает вопрос – а где сие использовать? А, например, в термометрах. Например, есть такие платиновые термометры сопротивления. Принцип работы заключается в том, что мы измеряем сопротивление платиновой проволоки (оно, как мы сейчас выяснили, зависит от температуры). Эта проволока является датчиком температуры. И на основании измеренного сопротивления мы можем сделать вывод о том, какая температура окружающей среды. Эти термометры хороши тем, что позволяют работать в очень широком диапазоне температур. Скажем, при температурах в несколько сотен градусов. Мало какие термометры там еще смогут работать.

И просто как интересный факт – обычная лампа накаливания имеет в выключенном состоянии значение сопротивления гораздо меньшее, чем при работе. Скажем, у обычной 100-вт лампы сопротивление нити в холодном состоянии может быть примерно 50 – 100 Ом. Тогда как при штатной работе оно вырастает до величин порядка 500 Ом. Сопротивление вырастает почти в 10 раз! Но и нагрев тут в районе 2000 градусов! Кстати, вы можете на основании приведенных формул и измерения тока в сети попробовать более точно оценить температуру нити. Как? Подумайте сами . То есть при включении лампы через нее сначала течет ток, в несколько раз превышающий рабочий, особенно если момент включении попадет на пик синуса в розетке. Правда сопротивление мало весьма недолго, пока лампа не разогреется. Потом все выходит в режим и ток становится штатным. Однако такие броски тока являются одной из причин, почему лампы часто перегорают именно при включении.

На этом предлагаю закончить, господа. Статья получилась чуть больше, чем обычно. Надеюсь, вы не очень устали . Огромной вам всем удачи и до новых встреч!

Вступайте в нашу группу Вконтакте

Вопросы и предложения админу: This email address is being protected from spambots. You need JavaScript enabled to view it.

Светодиодные лампочки в стопы. Взрыв мозга, подборка сопротивлений, перепайка РКИЛ.

Сразу предупреждаю — букв будет очень много. Так что кому интересно — попытайтесь осилить 🙂 Для ленивых — совсем самое основное выделено жирным 🙂 Проблема, описанная тут думаю не у меня одного, да и вдруг кто то столкнется в дальнейшем.

Итак, одним прекрасным (ну или может быть не очень) днем, заметил я одну не очень приятную вещь — лампочки в стопах вместо красного света светили каким то непонятным бело-желто-розовым. Вытащив лампочку на свет присмотрелся и увидел что все красное напыление с нее просто выгорело. Ну точнее почти всё. Причина, по которой мне нужны именно красные лампы описана тут.
Кажется нужна то мелочь, либо купить такие же красные, либо поставить светодиодные. Первый вариант откинул сразу. С этими лампами я проездил полгода, но когда они выцвели — неизвестно — может день назад, а может через день после установки. Поэтому выбор мой пал на вариант номер 2 — установка светодиодных ламп. Тут опять же есть проблема — светодиоды имеют направленный пучок света, в отличии от обычной лампочки, у которой свет рассеянный, и могут смотреться просто как красные точки, что не есть безопасно при торможении. Но, на счастье, в магазине было замечено несколько видов красных ламп, у которых светодиоды стоят по кругу, то есть на отражатель будут попадать и светиться будет полностью весь стоп. После долгого перебора выбор мой пал вот на такие лампы:

Дел, кажется, буквально на 5 минут, вытащить лампы обычные и поставить светодиодные. Чем я сразу же и занялся. Вытащил левый патрон и плафона, вынул лампу, и попутно обнаружил что все таки китайские патроны дрянь, благо остались у меня еще от оригинальных осваров нормальные патроны, так что его под замену

Ну да это небольшое отступление. Поставил я обе светодиодных лампы, и вот тут то и началось все это веселое приключение, затянувшееся на 5 дней. Машина заглушена, стоит спокойно, а стопы светятся. Так, слегка, в полнакала, но горят. При нажатии на тормоз — загораются в полную силу. Вытаскиваю один светодиод, ставлю обычную лампу — все в порядке. Ясен пень, дело в сопротивлении, так как у диодов оно меньше, а у обычной лампы больше, то при одной лампе и одном светодиоде этого паразитного свечения нет.
Вот кстати для сравнения — диодный стоп и стоп с выгоревшей, бывшей когда то красной, лампой:

Но, все таки решил я погуглить что же это может быть, прав я или нет, и посправшивать людей на форумах. Поиски дали мало что, но все таки были такие же проблемы, сводилось все к сопротивлению. Хотя некоторые писали что может быть неисправен сам выключатель тормозных ламп, что лично мне показалось ерундой.
Итак, думал, думал я и вот что решил — если впаять в реле контроля исправности ламп (РКИЛ) вместо шунта резистор, то, наверное, это свечение светодиодов уйдет. Ну ладно, сказано — сделано. Везде пишут что паяется туда 1 Ом 1-3 Вт. Был куплен резистор 1Ом 2Вт и успешно внедрен вместо родного шунта. Процесс перепайки реле, и что и куда паять подробно описан тут.

Читайте так же:
Лампа светодиодная 220 вольт постоянного тока

Перепаял, пошел ставить (а надо сказать пошел уже третий день после покупки ламп). Поставил, радостный вставляю светодиоды в стопы, и… Нифига. Как светились, так и светятся. Хотя, конечно, ошибку БСК эта перепайка убрала, больше на светодиоды в стопах БСК не пищит.
Вернул обратно одну лампочку, чтоб ниче не светилось, пошел дальше искать решение проблемы.
Пришла мне в голову бешеная, идиотская идея — раз можно параллельно светодиоду поставить обычную лампу, чтоб он не светился, то вместо лампы можно поставить резистор, равный ей по номиналу. Где то даже откопал информацию что лампе 12V 21W соответствует резистор 6.8 Ом 20 Вт. Поехал в магазин. 6,8 не было, был 3,3. Купил. Увидев его размеры, что то как то желание ставить его отпало. Им убить можно, знаете ли…
По возвращении домой полез спрашивать народ на форумах. Господи, одному тебе известно сколько людей на форумах я задолбал своими глупыми вопросами. В итоге, все таки были даны мне дельные советы. Параллельно светодиоду подсоединить переменный резистор, крутить его от большего значения к меньшему, пока светодиоды не перестанут сами по себе светиться, замерить получившийся результат мультиметром и уже потом ставить постоянный резистор. Мощность резистора можно было рассчитать так — ток, потребляемый горящими стопами со светодиодами в амперах умноженный на напряжение (13-14 вольт).
Встал вопрос — а где же взять этот переменный резистор? ну понятно что они есть в магазинах… а вдруг дома тоже есть? Прицепился к маме, чтоб искала, благо подобной фигни дома много, правда ей уже лет по 30, но ведь главное чтоб работала, так? 🙂
Через час копаний на свет был извлечен переменный резистор, старше меня наверно раза в полтора, на 10 кОм

Вот и шикарно, не будет лишних трат)

Побежал замерять. Подцепил, кручу, верчу, светодиоды погасить хочу… Хоп, погасли! Меряем, что то около 5 кОм (решил на всякий случай взять поменьше, чтоб наверняка). Настало время мерять ток. Разъединил цепь на стоп в плюсе, щуп на клеммы, друг давит на педаль. 0.1 Ампер. То есть, постоянный резистор мне понадобится 4.5 кОм 1.4-1.5 Вт. Для перестраховки был куплен 4,7 кОм (не было 4,5) 2 Вт (оказывается — чем больше мощность резистора тем меньше он будет греться, запас важен).
Пошел ставить. Все говорят пайка, пайка… Я решил поступить по другому — резистор просто поджать в клеммы плюса и минуса стопов. Вытащил, переобжал, резистор на месте, все готово. Смотрю на стопы — паразитного свечения нет. Радости не было предела. Радовался как слон. Секунд 10, пока зажигание не включил. Стопы опять засветились. Да елки-бревна, че за напасть 🙁 как сразу не догадался что определять надо было на заведенной машине… И вот тут кстати выяснилась одна неприятная мелочь. Не знаю, видимо этот резистор как то повлиял, но БСК вообще никак не реагировал на отсутствие лампы. Ладно, главное не пищит, а у светодиодов срок службы должен быть большой, так что на первое время пойдет и так, дальше это все обязательно доработаю.
Так вот, увидев что стопы опять светятся, когда не надо, со злости выдернул резистор и подумал "а че я вообще сделал то? ну горели бы на заведенной машине, не страшно". Но, что не делается — все к лучшему. Не люблю, когда что то работает не так как должно, поэтому мне нужно было:
1) Срочная кото-терапия, для того чтоб успокоиться
2) Еще раз использовать переменный резиситор чтоб подобрать сопротивление правильно.

Успокоившись, сегодня, то есть уже на 5 день бешеного взрыва мозга и вспоминания всего курса школьной физики, пошел снова воевать. Итог — 2 кОм и светодиоды не светятся когда не должны, и горят отлично, когда должны, соответственно (для тех кого волнует вопрос яркости стопов — резистор, поставленный параллельно на яркость светодиодов не влияет, проверено).
Ну все, опять бегом в радиодетали. Взял на 2 кОм 3 Вт (ну уже какой был, да и мне полностью подходит). Поставил во дворе у себя, так же как ставил в прошлый раз — методом переобжимки клемм и запихиванием туда резистора.

Все, блин, свершилось чудо! Это дурацкое свечение светодиодов полностью убрано! А стопы… Стопы получились на славу) Красныееееееее…

Вот и наконец то окончились мои мучения, мучения моего мозга и задалбывание всех и вся. За это время я убил куче нервных клеток, себя чуть не убил за то что тупил столько раз (ведь оказалось то все элементарно и просто), вспомнил основы физики, которые забыл напрочь, и получил такую бурю эмоций… Хватит точно надолго!

Закон Ома для переменного тока катушки, участка цепи, типовых соединений — определение и формулы

Для участка цепи, на котором отсутствует источник постоянной ЭДС, закон Ома связывает между собой три характеристики: силу тока (I), напряжение (U), сопротивление (R).

Математически закон записывают так: I = U/R.

Сила тока возрастает с увеличением на пряжения, уменьшением сопротивления.

В этой записи напряжение, сила тока не изменяются с течением времени. Для участков цепей с переменным током формула остается прежней, но следует учитывать, что величины U, I изменяются во времени с некоторой частотой. Для некоторых элементов она влияет на сопротивление.

Особенности переменного напряжения, тока

Генераторы, вырабатывающие электроэнергию, сконструированы так, что напряжение, скорость изменения заряда в наших линиях электропередач меняются по гармоничному закону:

  • u, i – мгновенные значения (в произвольный момент времени);
  • Um, Im – амплитудные значения (максимальные);
  • Um – амплитуда напряжения;
  • Im – амплитуда тока;
  • t – время;
  • величина ω – циклическая частота.

Величина ω связана с линейной частотой ν выражением:

  • π = 3,14 – математическая константа;
  • ν = 50 Гц (для электрических сетей в нашей стране).

Произведение ωt называют фазой:

Измеряют в радианах (рад), φ0 – начальная фаза, зачастую равна нулю. Использование в формулах функции cos не изменяет смысла физических выражений.

Если напряжение, изменяющееся по гармоничному закону, приложить к обычному резистору (в его роли может быть лампа накаливания, тепловой нагреватель), то через него начнут двигаться частицы, характер движения которых изменяется по такому же закону.

Изменение величин будет синхронным, фазы – одинаковыми. Такое сопротивление называют активным.

Эффективные значения

Среднее арифметическое значение напряжения, скорости изменения заряда за период равно нулю, поэтому его нельзя использовать для характеристики колебательного процесса. Квадраты этих величин, их средние значения всегда положительны.

Квадрат среднего значения силы тока равен половине квадрата амплитудного значения:

Is – среднее значение. Его называют еще эффективным (другое название – действующим):

Квадрат силы тока пропорционален количеству энергии, образующейся в проводнике: Q

Эффективное значение величины переменного тока равно величине постоянного, при котором за время t = T образуется такое же количество теплоты. Для действующего значения напряжения формула аналогична:

Именно эффективные значения показывают измерительные приборы.

Происхождение индуктивного сопротивления

Вокруг проводника с движущимися заряженными существует магнитное поле. Оно слабое, но магнитная стрелка на него реагирует.

Если проводник намотать на катушку, то магнитное поле станет значительно более сильным. Оно приводит к появлению в катушке еще одного вида тока. Его возникновение в проводнике под действием магнитного поля называют электромагнитной индукцией. Обмотку называют катушкой индуктивности, а движение зарядов – индукционным током.

Читайте так же:
Схема подключения двух проходных выключателей с двумя лампочками

Одно из проявлений электромагнитной индукции – самоиндукция: возникновение дополнительной ЭДС в моменты резких изменений силы тока.

Это не колебания, возбуждаемые генератором, а изменения в момент включения, выключения, короткого замыкания. Для явления справедлива формула:

  • Esi – ЭДС самоиндукции;
  • ΔI – изменение силы тока;
  • Δt – промежуток времени;
  • L – индуктивность катушки, коэффициент самоиндукции.

Величина L – характеристика магнитных свойств катушки, измеряют ее в генри (Гн).

Индуктивность катушки равна 1 Гн, если при изменении в ней значения I на 1 А за 1 секунду возникает ЭДС самоиндукции 1 В.

Закон Ома для катушки индуктивности

Индукционное магнитное поле тормозит движение по проводнику свободных зарядов. Это причина дополнительного (индукционного) сопротивления. Оно зависит от индуктивности L, частоты сигнала:

где RL – индуктивное сопротивление.

Зависимость характеристик для участка цепи с катушкой индуктивности приобретает вид:

Катушка индуктивности имеет особенность: в ней колебания напряжения и скорости изменения заряда отличаются по фазе.

Колебания напряжения опережают колебания тока на четверть периода:

Разность между значениями функции sin для 2 колебаний называют сдвигом фаз. Для индуктивной катушки:

Для наглядности сдвиг фаз Δφ изображают в виде векторной диаграммы. Участок цепи, в котором возникает разность фаз между колебаниями тока, напряжения называют реактивной нагрузкой.

Закон Ома для участка цепи с конденсатором

Для неизменного сигнала конденсатор представляет непреодолимое препятствие. Переменный сигнал проходит через него с некоторым усилием. Называют его емкостным сопротивлением.

Оно зависит от электроемкости конденсатора, частоты сигнала и обратно пропорционально произведению:

  • RC – емкостное сопротивление;
  • ω – круговая частота;
  • C – емкость конденсатора.

Зависимость величин для участка цепи с конденсатором записывают так:

Конденсатор – реактивная нагрузка. Колебания напряжения, скорости изменения заряда не синхронны. Изменение U отстает от колебаний I на четверть периода:

Сдвиг фаз составляет 90°. Индуктивные, емкостные нагрузки сдвигают фазу в противоположных направлениях.

Закон Ома для типовых соединений

Резисторы, индуктивные катушки, конденсаторы соединяют несколькими способами:

  • все три элемента последовательно;
  • все три – параллельно;
  • два – параллельно, третий – последовательно с ними.

Запись закона Ома не изменяется, только есть отличие – в формуле для общего сопротивления.

Для цепей с активными, реактивными элементами оно называется полным или комплексным, его обозначают символом Z.

Поскольку на конденсаторе, катушке происходит сдвиг фаз, рассматривают не сами сопротивления, а их квадраты.

Катушка имеет активное сопротивление как проводник, индуктивное – как проявление электромагнитной индукции.

Цепь из резистора, катушки обозначают RL. В случае последовательного соединения полное сопротивление:

Z = √(R2 + RL2) = √(R2 + (ωL)2);

  • Зависимость I для этого случая:

I = U/Z = U/√(R2 + ω2L2);

  • Участок с резистором и конденсатором – цепь RC. Для соединения последовательно:

Z = √(R2 + RC2) = √(R2 + (1/ωC)2);

  • Зависимость величин для этого соединения:

I = U/Z = U/√(R2 + (1/ωC)2)

Для соединения последовательно всех элементов (цепь RLC) значение полного сопротивления:

Комплексное сопротивление параллельного соединения находят из выражения:

Знание особенностей протекания переменного сигнала в цепи с конденсатором, индуктивной катушкой помогает в расчете радиотехнических цепей. Реактивные элементы используют в фильтрах верхних, нижних частот. Явление возникновения колебаний, резонанса широко применяют в современных средствах связи.

Как измерить силу тока мультиметром

На приборах сила тока, которую они могут выдержать, указывается редко. Основными считаются напряжение и потребляемая мощность. Но в некоторых случаях без определения этой характеристики не обойтись. Мы расскажем, как измерить силу тока мультиметром и как можно использовать полученные данные.

Для чего измерять силу тока

Измерение силы тока в электротехнике проводится реже, чем напряжения или сопротивления. Но она необходима:

  • Для определения фактической мощности электроприбора P. Зная напряжение источника U и применив формулу Р=UxI, можно получить значение работы в ваттах.
  • Для проверки цепей или отдельных устройств на соответствие данной нагрузке. Если она слишком большая, возможен перегрев проводников и выход приборов из строя.
  • Для поиска утечки тока в аккумуляторе. Зачастую автовладельцы обнаруживают, что он разрядился при отсутствии нагрузки в гараже или на стоянке. Простая проверка помогает найти активных потребителей и отключить их, тем самым решить проблему.
  • Для расчета необходимой емкости источника. Например, при измерении светодиодной лампы установлено, что сила тока потребления равна 20 мА, а батарейка при данном сопротивлении нагрузки может обеспечить 900 мА. Тогда тока источника хватит на 45 часов работы светодиода.
  • Для поиска неисправностей при ремонте бытовой техники. Какие-либо отклонения в потреблении тока в меньшую сторону будут свидетельствовать о наличии неработающих участков.

В электротехнике или радиотехнике сила тока не менее важна, чем напряжение. Для ее определения в профессиональной работе раньше использовались амперметры. С появлением универсальных мультиметров эти исследования стали значительно проще и доступнее.

Особенности измерений

Если представить, что электрический ток — это текущая по трубе вода, а напряжение — действующий напор, то многие понятия и формулы становятся понятными. Когда труба перекрыта, то напор есть, а воды нет. Пока не появится потребитель, то есть нагрузка, он не потечет. А сопротивление — это подводные камни в русле, мешающие свободному прохождению потока, но заставляющие его работать.

Сила тока в физическом понимании — это количество заряженных частиц, протекающих в единицу времени через определенную точку системы. Измеряется она в амперах А или миллиамперах мА.

Измерения проводятся с помощью амперметров, а также бытовых или профессиональных мультиметров. Цифровые измерители просты и удобны в работе. Они позволяют установить не только силу тока и напряжение, но и другие характеристики — сопротивление, емкость конденсаторов, частоту переменного тока и т.д. Опасной для человека считается сила тока, превышающая 15 мА, при которой происходит спазм мышц. А удар в 100 мА — это практически всегда смертельный исход. Поэтому все работы, связанные с сетями под напряжением, должны производиться строго с соблюдением техники безопасности.

Алгоритм измерения силы тока мультиметром

Универсальные тестеры с питанием от батареек помогут быстро и точно определить нужные параметры цепи. Порядок стандартных действий:

  • выставляется нужный режим;
  • щупы подключаются к разъемам на измерительном приборе;
  • мультиметр встраивается в цепь;
  • после подключения источника питания снимаются показания.

Главное условие — обязательно должна присутствовать нагрузка, которая собственно и определяет значение силы тока. Это могут быть любые электроприборы с сопротивлением больше 0.

Выбор режима

На корпусе мультиметра расположен переключатель, который нужно перевести в сектор для измерения силы тока. Постоянный ток можно исследовать практически на всех мультиметрах. На шкале для него есть обозначения — А с прямой чертой и 3 пунктирами под ней, DCA и/или значок 10А. Профессиональными приборами можно измерять силу тока до 20 А.

Если параметры тока неизвестны, рекомендуется устанавливать переключатель на максимальный диапазон. Так вы убережете прибор от короткого замыкания и порчи. Затем, когда порядок величины будет установлен, ручку можно повернуть в другую позицию для получения более точных данных.

В некоторых моделях не предусмотрено измерение переменного тока. Но покупать другой мультиметр совсем необязательно. В этом случае можно использовать различные приспособления, например, готовые или самодельные резисторы. Их сопротивлением должно соответствовать 1 Ом. Тогда согласно закону Ома I=U/R снимаемое напряжение численно будет равно силе тока на данном участке цепи.

Читайте так же:
Энергосберегающая лампа светится после выключения выключателя

Также используется метод с выпрямлением диодным мостом. На вход подается переменный ток, а на выходе он постоянный. Затем можно проводить измерения своим мультиметром.

Подключение щупов

Щупы, прилагаемые к мультиметру, изготовлены в разных цветах — черный «минусовый» и красный для нагрузки. Они вставляются в гнезда на корпусе:

  • черный в СОМ;
  • красный в VΩmA или 10А.

Рекомендуется устанавливать проводники в разъемы с заведомо большим диапазоном, то есть сразу в 10 А. Особенно это важно, если верхний предел величины точно не известен. Измеряемый ток будет сначала определяться грубо, а при необходимости переключатель можно перевести в более тонкий регистр.

Измерение

Мультиметр для определения силы тока всегда подключается в цепь последовательно с нагрузкой или в разрыв. В качестве источника питания можно использовать бытовую электросеть или блок питания. По правилам электробезопасности сначала необходимо собрать всю систему, а затем подключить электричество.

Если на дисплее мультиметра высветились нули, значит, произошел обрыв и проводимость отсутствует. Иногда это показывает, что предел измерений установлен высоковато. В последнем случае нужно отключить питание и перенастроить мультиметр в соответствии с ожидаемой величиной, то есть переставить в другой разъем красный щуп и выставить более низкий предел измерений.

Переменный ток

В большинстве сетей — бытовых или промышленного назначения — протекает переменный ток. Он гораздо легче трансформируется и меньше теряет при передаче на дальние расстояния, чем постоянный.

При измерении напряжения или сопротивления мультиметр подключается параллельно нагрузке, но для определения силы тестер нужно встроить в разрыв цепи. В этом заключается определенная сложность. Но не обязательно резать провода. Можно использовать разборные разъемы. Например, специальную пару проводников со штырьками на одном конце и с «крокодилами» на другом. Штырьки вставляются в розетку, а «крокодилами» замыкают цепь на клеммах или вилке.

Самодельные приспособления также удобны. Если приходится проводить много измерений, то без них не обойтись. На рисунке вы видите устройство, которое поможет в работе без всякой опасности получить удар током.

Важно распределить правильно все проводники: фаза подключается к контакту одной розетки, ноль — к другой, между остальными устанавливается перемычка. Чтобы измерить силу тока, нагрузка подключается к первой розетке, а мультиметр ко второй. При подаче питания в замкнутой цепи легко определить силу тока.

Не разрывая проводника можно провести измерения с помощью токовых клещей. Они предназначены для работы как с переменным, так и постоянным током. Прибор внешне похожи на мультиметр с двумя круглыми зажимами. Между ними помещается исследуемый провод. Принцип установки режимов и диапазона аналогичен мультитестеру.

Постоянный ток

Источники такого тока — это аккумуляторы, блоки питания, генераторы и батареи. Поскольку отсутствует пульсация, «плюс» и «минус» всегда постоянны.

Постоянный ток при низком напряжении менее опасный, чем переменный. Он не вызывает патологических изменений в организме при разряде до 500 В, но свыше уже становится гораздо разрушительнее постоянного. В любом случае при работе с электричеством необходимо быть очень осторожным. Даже банальная батарейка в 9 В при определенных условиях может выдать достаточно травмирующий ток.

Измерение силы постоянного тока производится также в разрыве цепи. Допускается напрямую без нагрузки подключать к мультиметру батарейки с малой емкостью, но снимать показания нужно очень быстро, чтобы не вывести тестер из строя. При этом переключатель выставляется на максимум, а красный щуп помещается в разъем на 10 А.

Определение утечек

Иногда даже после небольшого простоя автомобильная аккумуляторная батарея отказывается давать необходимый заряд для запуска двигателя. В связи с этим владельцев авто интересует, как измерить силу тока аккумулятора мультиметром и откуда появилась утечка.

Аккумулятор — это источник постоянного тока с достаточно большой емкостью. Электроэнергия производится в нем в результате химических реакций, а после разрядки батарея вновь может восполнить нехватку тока от зарядного устройства.

Существует норма утечки тока в системе автомобиля, которая не превышает 30-50 мА. Но даже зимой это не должно стать причиной разрядки аккумулятора. Во время стоянки электроэнергия тратится на работу автомобильных гаджетов — сигнализации, часах, аудиосистемы, навигации и т.д. Энергопотребление их мало — не более нескольких десятков миллиампер.

Критические утечки, которые приводят к разрядке батареи, возникают из-за дополнительных потребителей или короткого замыкания в цепи. Определить их можно с помощью мультиметра:

  1. Отключить все устройства, потребляющие энергию. Выключить зажигание и вынуть из замка ключ.
  2. Установить режим измерения постоянной силы тока на 10 А.
  3. Устроить в цепи разрыв — «минус» аккумулятора подключить к разъему СОМ мультиметра, красный щуп соединить с помощью крокодила с бортовой сетью автомобиля.

В таком состоянии утечек, свыше допустимых 30-50 мА, быть не должно. Но если они присутствуют, придется искать причину. Нештатные потребители могут быть среди установленных самостоятельно устройств — магнитолы, противотуманных фар, подогрева сиденья, сигнализации и т.д.

Чтобы точно определить, что именно из этого является «виновником» энергопотерь, каждый вид оборудования нужно отсоединить от цепи и повторить испытания.

Часто расположенные вблизи движущихся частей автомобиля провода перетираются, что может стать причиной короткого замыкания. Поэтому все электрические коммуникации обследуются на наличие повреждений и изолируются.

Если же и после этих мероприятий добиться устранения утечки не удалось, проверка проводится при отключенных предохранителях и реле. Причины также могут крыться в неисправном генераторе или стартере.

Как измерить силу тока мультиметром в розетке

На такой вопрос есть единственно правильный ответ — это невозможно. В розетке присутствует только напряжение на контактах. Ток появится лишь после подключения нагрузки — лампочки или электроприбора.

Если напрямую подключить мультиметр к розетке, при соединении фазы и 0 в цепи произойдет короткое замыкание, поскольку сопротивление ничтожно мало. В лучшем случае сгорит предохранитель и выйдет из строя сам мультитестер, но последствия могут быть гораздо хуже.

Автоматическая защита домовой сети отреагирует отключением электропитания. Свет погаснет везде, а розетки не будут работать. Кроме того, искры от перегоревшего тестера могут вызвать пожар, ожог и другие неприятности, поэтому не стоит измерять ток в розетке даже ради эксперимента.

Как мультиметром измерить силу тока зарядного устройства

Устройство для зарядки аккумуляторов преобразует переменный ток из сети в постоянный с помощью трансформатора, выпрямителя и стабилизатора напряжения. Для автовладельцев производятся пуско-зарядные устройства — ПЗУ, — которые сочетают функции зарядки аккумулятора и запуска двигателя при севшей батарее. При этом заряда может вовсе не быть или в течение нескольких минут создается частичный заряд, необходимый для начала работы мотора.

В некоторых моделях ЗУ отсутствует индикация заряда, поэтому есть проблема с определением ампеража. Легко проверить силу тока можно обычным мультимером:

  1. Аккумулятор необходимо снять с автомобиля и подключить к зарядке.
  2. На мультиметре выставить шкалу на 10 А, а красный щуп вставить в разъем тоже на 10 А.
  3. «Плюс» зарядного устройства присоединить к положительному полюсу батареи.
  4. «Минус» зарядника соединить черным щупом с базой мультиметра (гнездо СОМ).
  5. Красный щуп подключить ко второй клемме аккумулятора.

При включении зарядного устройства в сеть мультитестер покажет силу тока в цепи. Задача будет решена даже без амперметра-индикатора.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector