Ele-prof.ru

Электро отопление
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Блок питания для светодиодов своими руками

Блок питания для светодиодов своими руками

Блок питания

Светодиоды получают все большее распространение в качестве осветительных приборов. В первую очередь это основано на их высокой светоотдаче, эффективности, высоком КПД и, как следствие, минимальному энергопотреблению среди всех осветительных приборов.

К устройствам на светодиодах относят также и светодиодные ленты, которые могут выполняться любой длины, в зависимости от текущих требований. Схема подключения светодиодной ленты легка в использовании.

Особенностью применения светодиодных устройств является потребность в пониженном напряжении питания, в основном 12 В. В продаже существуют две разновидности преобразователей напряжения осветительной сети 220 В в напряжение питания светодиодов. Это стабилизаторы напряжения (в просторечии – блок питания) и стабилизаторы тока (драйверы). Это принципиально разные устройства, они имеют совершенно разные схемы и принцип работы.

Немного теории

Большинство светодиодов требует для работы напряжение порядка 2-3 В. Конструкция осветительных ламп и светодиодных лент такова, что для их питания используются более распространенные источники напряжения на 12 В. В частности, светодиодные ленты выполнены на группах из трех последовательно соединенных одиночных светодиодов с ограничительным резистором. Откуда тогда два различных типа источников питания?

Дело в том, что светодиод для питания требует не напряжение, а ток. Странновато звучит?

Все правильно. Те 2-3 В, которые требуются для работы, это не питание, а падение напряжения на отдельном светодиоде, а оно уже образуется в результате протекания тока через элемент. Ток должен быть стабилизирован, так как светодиоды очень критичны к его величине. Во-первых, из-за большой зависимости яркости излучения, а, во-вторых, превышение тока катастрофически сокращает срок службы.

При нормальных условиях работы достаточно стабилизировать напряжение питания, ток также будет стабильным. Не зря сказано – при нормальных условиях. Дело в том, что, как и все полупроводниковые элементы, светодиоды имеют ярко выраженную температурную зависимость (которая, кстати, является основой всех электронных измерителей температуры). При изменении температуры окружающей среды, будет меняться и ток, протекающий через прибор при неизменном входном напряжении. Со всеми вытекающими последствиями.

Так что же лучше?

В большинстве случаев применяются именно стабилизаторы напряжения. Ведь в основном светодиодное освещение применяется там, где диапазон изменения температур не очень высок. Это жилые и рабочие помещения, квартиры, частные дома и так далее. Еще одним доводом в пользу стабилизаторов является то, что осветительные приборы всегда соединяются параллельно. Даже светодиодные ленты, хоть и имеющие в составе группы из последовательно соединенных светодиодов. Эти группы при наращивании длины ленты соединяются также параллельно. А, как известно, падение напряжения при параллельном соединении остается неизменным. Растет потребляемый ток.

Драйвер (стабилизатор тока) целесообразно применять, в случае одиночных светодиодных ламп, последовательно соединенных приборов, и при значительных колебаниях температуры (уличное освещение).

Мощность источника питания

Мощность источника питания зависит от мощности суммарной нагрузки всех подключенных устройств. Все блоки питания имеют некоторый предел допустимой мощности, при превышении которой нарушается стабильность работы или возникает перегрев. Поэтому мощность нагрузки должна быть ниже максимально допустимой у блока питания. Запас по мощности источника может быть сколько угодно велик, растет только его масса и стоимость. Но это касается только блоков питания старого типа, в схемах которых используются понижающие трансформаторы. Современные импульсные блоки питания имеют ограничение по минимальному току нагрузки. Это также следует учитывать при проектировании осветительной сети.

То же самое относится и к драйверам. Принцип стабилизации тока подразумевает его стабильность при различных значениях выходного напряжения. Например, лампа на 12 В мощностью 1 Вт, потребляет ток 0.83 А (Закон Ома). Такой же ток должен выдавать драйвер. При подключении к нему этой лампы на выходе источника будет 12 В. Используя две таких лампы, соединенных последовательно, при том же потребляемом токе можно увидеть на выходе блока уже 24 В. И так далее, пока не наступит ограничение выходного напряжения. Тогда, соответственно, уже упадет и ток. Подключать параллельно несколько ламп к драйверу нельзя, по той причине, что выходной стабилизированный ток, поделится пропорционально между всеми потребителями.

Сложность проектирования освещения с драйверами и невозможность изменения количества подключенных приборов ограничивает их использование. А вот при выполнении наружного освещения, в диапазоне температур от минусовых до плюсовых, без стабилизаторов тока не обойтись.

Блок питания своими руками

Собрать своими руками импульсный блок питания под силу только квалифицированному специалисту. Гораздо проще для изготовления будет схема на трансформаторе. Главное, от чего необходимо отталкиваться – это мощность понижающего трансформатора, больше ожидаемой нагрузки (лампы или ленты) раза в полтора. На выходе трансформатора должно присутствовать переменное напряжение порядка от 12 В до 20 В.

Читайте так же:
Стабилизатор напряжения тока 12в для светодиодов

Как самостоятельно сделать простой стабилизатор тока для светодиодов своими руками?

В настоящее время трудно представить тюнинг автомобиля без светодиодных ламп. Но порой их установка осложнена тем, что они перегорают. Чтобы избежать этой ситуации, в сеть можно включить стабилизатор тока для светодиодов своими руками. В статье приводятся примеры микросхем, по которым можно его сделать.

Схемы стабилизаторов и регуляторов тока

Всем известно, что светодиодным лампочкам необходимо питание двенадцать вольт. В сети авто это значение может доходить до 15 В. Светодиодные элементы очень чувствительны, на них такие скачки отражаются отрицательно. Светодиодные лампы могут перегореть либо некачественно светить (мигать, терять яркость и т.д.).

Чтобы светодиоды служили дольше, в электросеть автомобиля включаются драйвера (резисторы). При нестабильности в сети устанавливаются устройства, которые поддерживают постоянное значение. Существует несколько простых микросхем, по которым можно сделать стабилизатор напряжения своими руками. Все компоненты, входящие в цепь, можно приобрести в специализированных магазинах. Обладая начальными знаниями по электротехнике сделать приборы будет несложно.

На КРЕНке

Для того, чтобы сконструировать простейший стабилизатор напряжения 12 вольт своими руками, понадобится микросхема с потреблением 12 В. В этом случае подойдет регулируемый стабилизатор напряжения 12 В LM317. Он может функционировать в электросети, где входной параметр составляет до 40 В. Чтобы прибор стабильно работал, необходимого обеспечивать охлаждение.

Крены для микросхем

Крены для микросхем

Стабилизатор тока на LM317требует для работы небольшой ток до 8 мА, и данное значение обычно остается неизменным, даже при большом токе, протекающем через крен LM317, или при изменении входного значения. Это реализуется с помощью компоненты R3.

Можно применять элемент R2, но пределы при этом будут небольшими. При неизменном сопротивлении LM317 ток, идущий через прибор, будет также стабильным (автор видео — Создано в Гараже).

Входное значение для кренки LM317 может составлять до 8 мА и выше. Пользуясь этой микросхемой, можно придумать стабилизатор тока для ДХО. Это устройство может выступать нагрузкой в бортовой сети или источником электричества при подзарядке аккумуляторной батареи. Сделать простой стабилизатор напряжения LM317 не составляет труда.

На двух транзисторах

На сегодняшний момент пользуются популярностью стабилизирующие устройства для бортовой сети машины на 12 В, разработанные с использованием двух транзисторов. Данную микросхему используют как стабилизатор напряжения для ДХО.

Резистор R2 является токораздающим элементом. При возрастании тока в сети увеличивается напряжение. Если оно достигает значения от 0,5 до 0,6 В, открывается элемент VT1. Открытие компонента VT1 закрывает элемент VT2. В итоге, ток, проходящий через VT2, начинает снижаться. Можно вместе с VT2 применять полевой транзистор Мосфет.

Элемент VD1 включается в цепь, когда значения находится в пределах от 8 до 15 В и настолько велики, что транзистор может выйти из строя. При мощном транзисторе допустимы показания в бортовой сети около 20 В. Не стоит забывать о том, что транзистор Мосфет откроется, если показания на затворе будут 2 В.

Если применять универсальный выпрямитель как зарядку для АКБ или других задач, то достаточно использовать резистора R1 и транзистор.

На операционном усилителе (на ОУ)

Стабилизатор напряжения для светодиодов на основе ОУ собирается при необходимости создания устройства, которое будет работать в расширенном диапазоне. В рассматриваемом случае в качестве элемента, который будет задавать выпрямляемый ток, является R7. С помощью операционного усилителя DA2.2 можно увеличить уровень напряжения в токозадающем компоненте. Задачей компонента DA 2.1 является контроль опорного напряжения.

При создании схемы следует учесть, что она рассчитана на 3А, поэтому необходим больший ток, который должен поступать на разъем ХР2. Кроме того, следует обеспечивать работоспособность всех составляющих данного устройства.

Читайте так же:
Legrand valena выключатель двухклавишный с подсветкой подключение

Сделанный стабилизирующий прибор для автомобиля должен иметь генератор, роль которого выполняет REF198. Чтобы правильно настроить прибор, ползунок резистора R1 нужно установить в верхнее положение, а резистором R3 задавать необходимое значение выпрямленного тока 3А. Для погашения возможных возбуждений, используются элементы R,2 R4 и C2.

На микросхеме импульсного стабилизатора

Если выпрямитель для автомобиля должен обеспечивать высокий КПД в сети, целесообразно использовать импульсные компоненты, создавая импульсный стабилизатор напряжения. Популярной является схема МАХ771.

Схема выпрямителя с импульсным выпрямителем

Схема выпрямителя с импульсным выпрямителем

Импульсный стабилизатор тока характеризуется выходной мощностью 15 Вт. Элементы R1 и R2 делят показатели схемы на выходе. Если делимое напряжение превышает по показателям опорное, выпрямитель автоматически уменьшает выходное значение. В противном случае устройство будет увеличивать выходной параметр.

Сборка данного устройства целесообразна, если уровень превышает 16 В. Компоненты R3 являются токовыми. Для устранения высокого падения нагрузки на данном резисторе в схему следует включить ОУ.

Заключение

Нами были рассмотрены стабилизаторы напряжения на различных компонентах. Эти схемы можно усложнять, повышая быстродействие, улучшая другие показатели. Можно использовать готовые микросхемы, которые всегда можно усовершенствовать своими руками, создавая устройства, предназначенные для выполнения конкретных задач.

Фотогалерея «Микросхемы для самодельных выпрямителей»

Прибор на КРЕНке 1. Прибор на КРЕНке На двух транзисторах 2. На двух транзисторах С операционным усилителем 3. С операционным усилителем

Разработка микросхем для светодиодов в авто – трудоемкое и сложное дело, которое требует специальных знаний и опыта. При их отсутствии трудно будет достичь необходимого результата.

Но опыт можно приобрести, внимательно собирая несложный стабилизатор тока для светодиодов согласно приведенным схемам. Его можно использовать для дневных ходовых огней в своем автомобиле с установленными светодиодными лампами.

Видео «Выпрямитель для светодиодов своими руками»

Видео о том, как изготовить устройство, которое защитит светодиоды от перегорания (автор ролика — Яков TANK_OFF).

Как мы рассчитали мощность блока питания для светодиодной ленты?

Чтобы светодиодная лента работала корректно, нужно подобрать для нее блок питания правильной мощности. В этой статье наши специалисты компании Giant4 расскажут, как рассчитать мощность, подобрать блок и куда его лучше установить. Погнали!

Блоки питания (БП), как всем известно, преобразуют напряжение сети 220В в 5В, 12В, 24В или любое другое рабочее напряжение, необходимое для питания светодиодной ленты.

Чаще всего для питания светодиодных лент используются импульсные блоки c резисторами в качестве ограничителей тока. Для подбора блока питания мы учитывали следующие факторы: рабочее напряжение светодиодной ленты, ее суммарную мощность, пыле и влагозащиту корпуса блока питания, габариты и размеры. О каждом поговорим немного подробнее.

У разных типов светодиодных лент свое рабочее напряжение. Так, оно может быть 12В, 24В, 36В, адресные светодиодные ленты SPI обычно запитываются от 5В. Таким образом, рабочее напряжение должно соответствовать напряжению блока питания на выходе. В более сложных моделях БП для специальных проектов есть возможность плавной регулировки выходного напряжения. Мы используем их там, где необходимо нестандартное значение выходного напряжения или нужна компенсация напряжения на длинных проводах.Также из нестандартных решений можно выделить блоки питания с несколькими каналами, на которых входное напряжение имеет разные значения. Такие решения подойдут для проектов, в которых нужно запитать ленты с разным рабочим напряжением на один источник напряжения.

Каждый блок питания мы рекомендуем рассчитывать с коэффициентом запаса, который составляет обычно 15-20% (обозначим его в формуле расчета как К2). Если пренебречь коэффициентом запаса, то блок питания будет работать на пределе, что в конечном тоге приведет к перегреву элементов и выходу из строя всего БП. Суммарную мощность светодиодной ленты можно вычислить, умножив удельную мощность ленты на 1 метр на общую длину ленты в метрах (L).

Например, возьмем светодиодную ленту RGB 5050 14.4 вт/метр длиной 8м, и максимальным К3 в 20%.РМБП = 8 * 14,4 * 1,2 = 138,24В. Округляем получившееся значение до большей цифры, и для данного отрезка светодиодной ленты нам вполне хватит блока питания в 150В.

Давайте подробнее рассмотрим, зачем вообще нужен К3? При работе на пределе мощности, нагрев корпуса будет составлять примерно 60-70 градусов, и это только снаружи с учетом теплоотдачи, что тогда говорить о внутренних элементах БП? Первыми признаками перегрева, помимо тактильных ощущений, считаются посторонние звуки. Так как блоки питания не имеют вентилятора, они не должны издавать ни тресков, ни свистов. Выйти из строя в такой ситуации может даже качественное изделие, а если товар был заказан исключительно из параметров низкого ценника, то при перегреве причиной выхода прибора из строя, скорее всего, станет некачественная пайка, оказавшаяся в запредельных условиях работы. Необлуженные выводы элементов со временем окисляются и пропадает контакт. Простому пользователю самостоятельно устранить такую неисправность будет очень сложно. Поэтому при заказе блоков питания не стремитесь особенно сэкономить, можете впоследствии заплатить дважды.

Читайте так же:
Автоматический выключатель света шнайдер

Мы используем в своей работе только качественные блоки питания, но любой механизм прослужит долго только в том случае, если Вы по отношению к нему все сделали правильно. Например, в вопросе подключения очень важно воздушное пространство для естественной вентиляции, поэтому мы рекомендуем создать «подушку» в 20 см вокруг БП по высоте и со всех сторон (кроме низа, конечно). Близость к нагревательным приборам и горячим поверхностям ведет к перегреву и снижает максимально допустимую нагрузку для подключения. Если для подключения требуются два и более блока питания, их не стоит располагать вплотную друг к другу. Прямые солнечные лучи также ведут к естественному, хотя и не постоянному, перегреву корпуса. Нужно выбирать такое место, в котором при необходимости БП будет доступен для проверки работы и возможного обслуживания.

Светодиодное освещение прекрасно работает на потребителя в том случае, если все технические моменты просчитаны правильно, закуплен качественный товар и соблюдена технология подключения. Делайте свои световые проекты продуманно и пользуйтесь только проверенной информацией!

Например, возьмем светодиодную ленту RGB 5050 14.4 вт/метр длиной 8м, и максимальным К3 в 20%.РМБП = 8 * 14,4 * 1,2 = 138,24В. Округляем получившееся значение до большей цифры, и для данного отрезка светодиодной ленты нам вполне хватит блока питания в 150В.

Анастасия, ничего не смущает?
1. Избегайте употреблять устоявшиеся аббревиатуры в другом смысле. КЗ — это короткое замыкание
2. Не вводите новые аббревиатуры, это не конспект лекции. РМБП? WTF!?
3. Откуда вольты появились? 😉
4. Да, и аккуратнее с "вт", правильно — "Вт"

Александр, спасибо Вам за внимательность и то, что обратили внимание на недочеты! Обязательно исправимся))

Забыли учесть. Если лента больше 5 метров то у блока будет гореть ярко. А дальше тусклее и тусклее при RGB. Для этого используют усилители. Раз вы эксперт вот вам задачка: RGB лента 17,7 м.п. Соответственно с пультом управления одним. Лента 14,4 вт на м.п. потребляет. Что нужно купить и как подключить так чтобы когда даёшь маленькую мощность все куски ленты горели одинаково. А не только у блока. И какая должна быть последовательность 🙂

Просто 17,7м.п. разделить на два, ленту разрезать и запитать с двух концов от блока трансфортатора.

Лента будет гаснуть и сигнал от блока на такое расстояние не вытянет. У вас просто на конце ленты будет тусклый свет.

Как вы это решили?

В общем нужно:
1. Блок питания 2 шт.
2. Уселитель 2 шт.
3. Блок управления 1 шт.
Подключение:
Блок, за ним в плотную усилитель, к усилителю лента. Далее ведём ленту до 2 усилка + запитываем усилок от блока. Блоки должны быть на ровном удалении друг от друга, как и количество ленты запутываемой на них. Только выполняя данные условия все будет работать так как в теории. Ровно, и включаться, и выключаться.

Если есть место куда блоки распихивать прямо рядом с лентой, то отличное решение!

А чего Вы не берете блоки питания от персональных компьютеров? Стоят значительно дешевле, продаются в любом компмагазине, мощность 300-400 вт.

Например, нас в магазине БП на 400 ватт стоит почти 1400 рублей, с охлаждением и всеми плюшками. В ДНС, ну скажем так, не самый клевый Aerocool на 450 ватт стоит примерно 1650 рублей, это во-первых дороже, а во вторых в компьютерном БП есть несколько линий, на 3.3 вольта, на 5 вольт и на 12 вольт. Так вот в БП на 450 ватт на 12 вольтовую линию максимальная нагрузка 360 ватт. Отнимаем положенные 20% и получается около 300 ватт. Итого, за шумный аэрокул (а это один из самых бюджетных БП) платим больше, а нужного эффекта получаем меньше.
Во-вторых размеры. Специализированный БП ощутимо меньше по размерам. А еще, например в компьютерных БП есть ненужные провода, которые не вырежешь просто так — под материнскую плату, под процессор и прочую периферию. Это все лишняя "лапша".
Если подключать к компьютерному БП, надо либо резать провода 12 вольтовые, чтобы к ним припаять ленту, либо мастерить molex разъем (разъем питания компьютерный). Со светодиодным БП просто провода зажал в клеммы и все.
Также чтобы запустить компьютерный БП, надо на разъеме, к которому подключается материнская плата, перемычкой замкнуть черный и зеленый разъемы. Ну тоже так себе идея, что-то замыкать в "лапше", которая висит и мешается. В целом это как-то долго и немного непонятно.
А еще есть вроде такая особенность у бюджетных компьютерных БП, что их нельзя подключать без нагрузки, но точно я Вам тут не скажу.
Ну и меня бы немного волновал вопрос, что может быть, если нагрузить под потолок 12 вольтовую линию на БП, оставив 3.3 и 5 вольтовую пустую. Вдруг какие-нибудь перекосы импульсные.
Ну и немного неудобно, наверное, будет запихнуть весьма шумный БП от компьютера за карниз или комфортно закрепить над натяжным потолком.

Читайте так же:
Как сделать свет с двойным выключателем

1. У нормальных б.п. не нужно "отнимать 20%", т.к. заявленные характеристики соответствуют реальным.
2. Блок питания InWin Powerman 600W стоит 1 900 р. Мощность по линии 12 В —
512 Вт. И InWin будет ЗНАЧИТЕЛЬНО надежнее, чем дешевый китайский б.п.
3. Лапшу легко убрать, кнопку легко приделать.

У меня стоит блок питания на 2 кулера на радиаторы — хватает на 1,5-2 года работы 24/7 в ОЧЕНЬ пыльном помещении. При этом б.п. ставлю от старых п.к.

Возможно я просто не владею ценами — скажите, сколько стоит специализированный б.п. на 500 Вт?

Вот наглядное видео задачки, которую недавно решили не 1 контора не смогла дать ответа.

Диммер для светодиодной ленты

Светодиодные ленты достаточно быстро перешли из категории просто удобных светильников в способ реализации дизайнерских идей. Это незаменимая деталь для фонового освещения интерьера или декоративных элементов, дополняющих общий интерьер дома. Кроме того, изделие позволяет создать уникальный стиль экстерьера зданий с разнообразными световыми эффектами, при этом удобно и эффективно зонировать отдельные помещения.

Диммер для светодиодной ленты

Для подключения устройства необходимо применять специальный прибор — диммер для светодиодной ленты. При помощи такого элемента можно создать креативное интерьерное освещение, наиболее подходящее под дизайнерское решение той или иной комнаты.

Как управлять светодиодными лентами?

Полупроводниковый диод – универсальный светоприбор, которому характерна снижающаяся BAX характеристика. Входящий в систему ток имеет предельное значение, постепенно достигающее повышенного показателя. Если в момент функционирования прибора пренебречь данным фактором, в результате можно получить полное перегорание кристаллов в момент резкого падения мощности. Именно поэтому светодиодные ленты запрещается подключать напрямую к источнику электротока.

Специфика работы устройства заставляет прибегать к применению специального оборудования, при помощи которого производится управление светом и стабилизация напряжения – диммер.

Мини диммер светодиодной ленты

Мини диммер светодиодной ленты

При создании простой системы освещения можно воспользоваться классическим резистором. Он способен обеспечить стабильность функционирования светодиодной ленты, но при этом уровень его сопротивления должен быть высоким. Также следует учитывать электродвижущую силу поступающей электроэнергии, соответствующую повышенной степени.

Однако в данной системе имеются свои недостатки, на ограничительном приборе будет происходить бесполезная потеря электрической мощности, имеющей большее значение, чем необходимо для диодов.

Для максимальной компенсации данного минуса, к светодиодной полосе нужно подключать напитывающее низковольтное устройство, которое обеспечивает сбалансированный выходной электроток. В лампочках подпитывающий элемент предусматривается комплектацией цокольного элемента. Однако для диодного ленточного прибора данная деталь изготавливается только в виде отдельного составляющего. Модуль на выходе дает напряжение 120 и 20В со строгим ограничением электротока.

ВИДЕО: Подключение светодиодной ленты к миниатюрному диммеру

Регуляция входного напряжения

Присоединяемая к нему диодная полоса должна обладать соответствующей входной мощностью, для которой в сам светоприбор встроен ограничительный резистор. Он обеспечивает оптимальный режим для функционирования светодиода. Входное напряжение подключенного диммера и устройства регуляции должны соответствовать числу диодных кристаллов размещенных на ленте.

Читайте так же:
Как правильно подключить прожектор светодиодный с тремя проводами
Напряжение, Вт20304560100150200
Вид модульной системыЧисло модулей, ед.
Accent 15 o *60 o ,160 o131928386495126
Skat1725385083125166
Matrix2355178103174260347
323355270115174231
41725375083125166
Simple 3, 2, 3 mini5584125166277416556
Genius 3L, 3Q121725335584111
Simple 427406079132196263

Кроме того, светодиодная полоса должна иметь соответствующую длину, не превышающую стандартизированного параметра равного 5м. При необходимости применения изделия меньшего размера, полосу можно обрезать. Однако данный процесс нужно осуществлять в местах, где есть линия разреза. В случае потребности удлинения изделия используется дополнительная лента, но тогда последующий отрезок требуется подключать напрямую к преобразователю.

Разновидности стабилизаторов

На сегодняшний день для замены ненадежный пассивных резисторов были разработаны новые полупроводниковые агрегаты.

Диммер для управления лентой с пульта

Диммер для управления лентой с пульта

Регуляторы источника тока

Данный вид диммера дает возможность на момент падения мощности поддерживать стабильный уровень выходного электротока в нужном диапазоне. Оборудование помимо преимуществ имеет ряд минусов:

  • При нестабильном напряжении, проходящем через светодиод, которое варьируется в пределах 20-100мА, достаточно широко изменяется уровень рассеиваемой мощности и температурного режима.
  • На момент сильного перегрева светодиодной ленты, ее технические особенности терпят значительные изменения. Это касается и температуры света.
  • Долгосрочное функционирование при повышенном нагреве может понизить эксплуатационный срок всей светодиодной системы.

Импульсные устройства

Данная разновидность регуляторов яркости светодиодной ленты не имеет большинство из вышеперечисленных минусов. Наибольшей популярностью пользуются PWM диммеры – широтно-импульсные модуляционные системы. Даже при низкой инертности диодов, модификация способна наиболее эффективно функционировать.

Процесс работы мини диммера заключается в перемене продолжительности работающей доли периода импульсного тока прямоугольных форм, передающегося на оборудование. Данный промежуток имеет название – широта, она периодически изменяется в пределах 0-100%. Тем самым широтная доля вызывает перемену действующих параметров в диммере.

При всех изменениях особенностей работы, электроток на выходе имеет стабильный уровень, равный заданному значению. Импульсные устройства считаются оптимальным вариантом для компьютерного или цифрового управления осветительной системой.

Схема подключения регулятора

Подключение диммера требуется при использовании одного из перечисленных светоприборов:

  • RGB – излучатель цветного освещения, который при смещении одного из трех цветов выдает белый свет. Если отдельно включать каждый элемент можно создать неповторимые световые эффекты.
  • Люминофорные – применяют вторичное лучеиспускание определенного слоя-люминофора с желтым оттенком, освещаемого мощным синим диодом.

Чтобы запитать приборы током, следует купить соответствующую диммерную конструкцию.

Для подключения многокристальных полос белого цвета применяются диммеры, относящиеся к одноканальной категории. Они подключаются после преобразователя.

Схема подключения диммера для светодиодной ленты

Схема подключения диммера для светодиодной ленты

RGB ленты требуют применение трехканальных систем контроля, которые для каждого существующего канала предполагают использование отдельного устройства управления.

Схема подключения RGB светодиодной ленты

Схема подключения RGB светодиодной ленты

При подборе реостата обратите внимание на способ настройки, который может производиться при помощи:

  1. Потенциометра, который встраивается в конструкцию несущего корпуса включателя
  2. Пульта ДУ
  3. Проводного интернета, Bluetooth, беспроводной сети Wi-Fi.

Недостатки реостатов

Главным минусом бюджетных приборов ШИМ считается интенсивное мерцание даже при низкой степени яркости, когда зрение особенно чувствительно относится к перемене освещения.

Помимо неприятных ощущений, при длительном нахождении в помещении с подобным освещением можно получить значительное психофизиологическое воздействие. Данное влияние может выражаться на резком ухудшении настроения, концентрации внимания, возникновении головной боли, усталости, сонливости.

Во избежание подобной ситуации, систему управления следует дополнить микроконтроллером. К примеру, можно установить микросхему марки LM3409. Она одновременно производит регулирование в 2-х импульсивных и аналоговых режимах.

Качественный диммер должен быть приспособлен к нелинейности полупроводниковой системы светодиодного освещения. Также учитывать зрительное восприятие света и максимально оптимизировать излучение исходя из потребностей пользователя.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector