Ele-prof.ru

Электро отопление
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Реферат на тему; Воздействие электрического тока на организм человека и меры защиты от поражения электрическим током в быту и производственной сфере

Реферат на тему «Воздействие электрического тока на организм человека и меры защиты от поражения электрическим током в быту и производственной сфере»

Мы подробно рассмотрели свойства электростатического поля, порождаемого неподвижными электрическими зарядами. При движении электрических зарядов возникает целый ряд новых физических явлений, к изучению которых мы приступаем.
В настоящее время широко известно, что электрические заряды имеют дискретную структуру, то есть носителями зарядов являются элементарные частицы – электроны, протоны и т.д. Однако в большинстве практически значимых случаев эта дискретность зарядов не проявляется, поэтому модель сплошной электрически заряженной среды хорошо описывает явления, связанные с движением заряженных частиц, то есть с электрическим током.

Электрическим током называется направленное движение заряженных частиц

С использованием электрического тока вы хорошо знакомы, так как электрический ток чрезвычайно широко используется в нашей жизни. Не секрет, что наша нынешняя цивилизация в основном базируется на производстве и использовании электрической энергии. Электрическую энергию достаточно просто производить, предавать на большие расстояния, преобразовывать в другие требуемые формы.

Кратко остановимся на возможных проявлениях действия электрического тока.

Тепловое действие

электрического тока проявляется практически во всех случаях протекания тока. Благодаря наличию электрического сопротивления при протекании тока выделяется теплота, количество которой определяется законом Джоуля-Ленца, с которым вы должны быть знакомы. В некоторых случаях выделяемая теплота полезна (в разнообразных электронагревательных приборах), часто выделение теплоты приводит к бесполезным потерям энергии при передаче электроэнергии.

Магнитное действие

тока проявляется в создании магнитного поля, приводящего к появлению взаимодействия между электрическими токами и движущимися заряженными частицами.

Механическое действие

тока используется в разнообразных электродвигателях, преобразующих энергию электрического тока в механическую энергию.

Химическое действие

проявляется в том, что протекающий электрический ток, может инициировать различные химические реакции. Так, например, процесс производства алюминия и ряда других металлов основан на явлении электролиза – реакции разложения расплавов оксидов металлов под действием электрического тока.

Световое действие

электрического тока проявляется в появлении светового излучения при прохождении электрического тока. В некоторых случаях свечение является следствие теплового разогрева (например, в лампочках накаливания), в других движущиеся заряженные частицы непосредственно вызывают появление светового излучения.

В самом названии явления (электрический ток) слышны отголоски старых физических воззрений, когда все электрические свойства приписывались гипотетическое электрической жидкости, заполняющей все тела. Поэтому при описании движения заряженных частиц используется терминология аналогичная используемой при описании движения обычных жидкостей. Указанная аналогия простирается дальше простого совпадения терминов, многие законы движения «электрической жидкости аналогичны законам движения обычных жидкостей, а частично знакомые вам законы постоянного электрического тока по проводам аналогичны законам движения жидкости по трубам. Поэтому настоятельно рекомендуем вам повторить раздел, в котором описаны эти явления – гидродинамику.

Какими явлениями сопровождается электрический ток?

электрический ток

Наличие тока в электроцепи всегда проявляется каким-либо действием. Например, работа при конкретной нагрузке или какое-то сопутствующее явление. Следовательно, именно действие электротока говорит о его присутствии как таковом в той или иной электроцепи. То есть, если работает нагрузка, то ток имеет место быть.

Известно, что электрический ток вызывает различного рода действия. Например, к таковым относятся тепловые, химические, магнитные, механические или световые. При этом различные действия электрического тока способны проявлять себя одновременно. Более подробно о всех проявлениях мы расскажем Вам в данном материале.

Тепловое явление

Известно, что температура проводника повышается при прохождении через него тока. В качестве таких проводников выступают различные металлы или их расплавы, полуметаллы или полупроводники, а также электролиты и плазма. Например, при пропускании через проволоку из нихрома электрического тока происходит ее сильное нагревание. Данное явление используют в приборах нагрева, а именно: в электрических чайниках, кипятильниках, обогревателях и т.п. Электродуговая сварка отличается самой большой температурой, а именно нагрев электродуги может достигать до 7 000 градусов по Цельсию. При такой температуре достигается легкое расплавление металла.

Количество выделяемой теплоты напрямую зависит от того, какое напряжение было приложено к данному участку, а также от электротока и времени его прохождения по цепи.

Для расчета объемов выделяемой теплоты используется или напряжение, или сила тока. При этом необходимо знание показателя сопротивления в электроцепи, поскольку именно оно провоцирует нагрев из-за ограничения тока. Также количество тепла можно определить при помощи тока и напряжения.

Химическое явление

Химическое действие электротока заключается в электролизе ионов в электролите. Анод при электролизе присоединяет к себе анионы, катод – катионы.

Иными словами, во время электролиза на электродах источника тока происходит выделение определенных веществ.

Приведем пример: в кислотный, щелочной или же солевой раствор опускаются два электрода. После пропускается по электроцепи ток, что провоцирует создание положительного заряда на одном из электродов, на другом – отрицательного. Ионы, которые находятся в растворе, откладываются на электроде с иным зарядом.

Читайте так же:
Выключателей освещения по стандарту

Химическое действие электротока применяется в промышленности. Так, используя данное явление, осуществляют разложение воды на кислород и водород. Кроме того, при помощи электролиза получают металлы в их чистом виде, а также осуществляют гальваническое покрытие поверхности.

Магнитное явление

Электрический ток в проводнике любого агрегатного состояния создает магнитное поле. Иными словами, проводник при электрическом токе наделяется магнитными свойствами.

Таким образом, если к проводнику, в котором протекает электроток, приблизить магнитную стрелку компаса, то та начнет поворачиваться и займет к проводнику перпендикулярное положение. Если же на сердечник из железа намотать данный проводник и пропустить сквозь него постоянный ток, то данный сердечник примет свойства электромагнита.

Природа магнитного поля всегда заключается в наличии электрического тока. Объясним: движущиеся заряды (заряженные частицы) образуют магнитное поле. При этом токи противоположного направления отталкиваются, а одинакового направления – притягиваются. Данное взаимодействие обосновано магнитным и механическим взаимодействием магнитных полей электротоков. Выходит, что магнитное взаимодействие токов первостепенно.

Магнитное действие применяется в трансформаторах и электромагнитах.

Световое явление

Самый простой пример светового действия – лампа накаливания. В данном источнике света спираль достигает нужной температурной величины посредством проходящего сквозь нее тока до состояния белого каления. Тем самым и излучается свет. В традиционной лампочке накаливания всего лишь пять процентов всей электроэнергии расходуется на свет, остальная же львиная доля преобразуется в тепло.

Более современные аналоги, например, люминесцентные лампы наиболее эффективно преобразуют электроэнергию в свет. То есть, около двадцати процентов всей энергии лежит в основе света. Люминофор принимает УФ-излучение, идущее от разряда, что возникает в ртутных парах или в инертных газах.

Самая эффективная реализация светового действия тока происходит в светодиодных источниках света. Электрический ток, проходя через pn-переход, провоцирует рекомбинацию носителей заряда с излучением фотонов. Лучшими led излучателями света являются прямозонные полупроводники. Изменяя состав данных полупроводников, возможно создание светодиодов для различных световых волн (разной длины и диапазона). Коэффициент полезного действия светодиода достигает 50 процентов.

Механическое явление

Напомним, что вокруг проводника с электрическим током возникает магнитное поле. Все магнитные действия преобразуются в движение. Примером служат электрические двигатели, магнитные подъемные установки, реле и др.

В 1820 году Андре Мари Ампер вывел известный всем «Закон Ампера», который как раз описывает механическое действие одного электротока на другой.

Данный закон гласит, что параллельные проводники с электрическим током одинакового направления испытывают притяжение друг другу, а противоположного направления, наоборот, отталкивание.

Также закон ампера определяет величину силы, с которой магнитное поле воздействует на небольшой отрезок проводника с электротоком. Именно данная сила лежит в основе функционирования электрического двигателя.

Статьи по теме:

  • Что такое проводник и диэлектрик?
  • Электрический ток и его скорость
  • Что такое электролитическое заземление?

Действия электрического тока: тепловое, химическое, магнитное, световое и механическое

Электрический ток в цепи всегда проявляется каким-нибудь своим действием. Это может быть как работа в определенной нагрузке, так и сопутствующее действие тока. Таким образом, по действию тока можно судить о его наличии или отсутствии в данной цепи: если нагрузка работает — ток есть. Если типичное сопутствующее току явление наблюдается — ток в цепи есть, и т. д.
Вообще, электрический ток способен вызывать различные действия: тепловое, химическое, магнитное (электромагнитное), световое или механическое, причем разного рода действия тока зачастую проявляются одновременно. Об этих явлениях и действиях тока и пойдет речь в данной статье.

Тепловое действие электрического тока

При прохождении постоянного или переменного электрического тока по проводнику, проводник нагревается. Такими нагревающимися проводниками в разных условиях и приложениях могут выступать: металлы, электролиты, плазма, расплавы металлов, полупроводники, полуметаллы.

Сварочная дуга

В простейшем случае, если, скажем, через нихромовую проволоку пропустить электрический ток, то она нагреется. Данное явление используется в нагревательных приборах: в электрочайниках, в кипятильниках, в обогревателях, электроплитках и т. д. В электродуговой сварке температура электрической дуги вообще доходит до 7000°С, и металл легко плавится, — это тоже тепловое действие тока.

Некоторые величины, характеризующие электрический ток

Сила тока. Электрический заряд, проходящий через поперечное сечение проводника за 1 сек, называют силой тока. Для её обозначения используют букву I, измеряют в амперах (A).

Сопротивление. Следующая величина, о которой необходимо знать — это сопротивление. Оно возникает из-за столкновений направленно движущихся электронов с ионами кристаллической решетки. В результате таких столкновений электроны передают ионам часть своей кинетической энергии. В результате чего проводник нагревается, а сила тока уменьшается. Сопротивление обозначается буквой R и измеряется в омах (Ом).

Читайте так же:
Кабель питания выходной ток

Сопротивление металлического проводника тем больше, чем длиннее проводник и меньше площадь его поперечного сечения. При одинаковой длине и диаметре провода наименьшим сопротивлением обладают проводники из серебра, меди, золота и алюминия. По вполне понятным причинам на практике используют провода из алюминия и меди.

Мощность. Выполняя расчёты для электрических цепей, иногда требуется определить потребляемую мощность (P).

Физиологическое воздействие электричества

Большинство из нас испытывали ту или иную форму электрического «удара», когда электричество заставляет наше тело испытывать боль или травмы. Если вам повезет, степень этого опыта ограничится покалыванием или болью из-за прохождения через ваше тело накопленного статического электрического заряда.

Когда мы работаем с электрическими цепями, способными передавать нагрузкам большую мощность, поражение электрическим током становится гораздо более серьезной проблемой, а боль – наименее важным результатом поражения электрическим током.

Поскольку электрический ток проходит через материал, любое противодействие (сопротивление) току приводит к рассеиванию энергии, обычно в виде тепла. Это самый простой и понятный эффект воздействия электричества на живую ткань: ток заставляет ее нагреваться. Если количество выделяемого тепла достаточно велико, ткань может сгореть.

Этот эффект физиологически аналогичен повреждению, вызванному открытым пламенем или другим высокотемпературным источником тепла. Кроме того, электричество обладает способностью сжигать ткани под кожей, обжигая даже внутренние органы.

Как электрический ток воздействует на нервную систему

Еще одно воздействие электрического тока на организм, возможно, наиболее опасное, касается нервной системы. Под «нервной системой» я имею в виду сеть особых клеток в организме, называемых нервными клетками или нейронами, которые обрабатывают и проводят множество сигналов, ответственных за регуляцию многих функций организма.

Головной мозг, спинной мозг и сенсорные/двигательные органы в теле функционируют вместе, позволяя ему чувствовать, двигаться, реагировать, думать и запоминать.

Нервные клетки взаимодействуют друг с другом, действуя как «преобразователи», создавая электрические сигналы (очень малые напряжения и токи) в ответ на ввод определенных химических соединений, называемых нейротрансмиттерами (нейромедиаторами), и высвобождая эти нейротрансмиттеры при стимуляции электрическими сигналами.

Если электрический ток достаточной силы проходит через живое существо (человека или другое существо), его влияние будет заключаться в подавлении крошечных электрических импульсов, обычно генерируемых нейронами, перегрузка нервной системы и предотвращение активации как рефлекторных, так и волевых сигналов для задействования мышц. Мышцы под воздействием внешнего электрического тока, непроизвольно сокращаются, и пострадавший ничего не может с этим поделать.

Эта проблема особенно опасна, если пострадавший касается руками проводника, находящегося под напряжением. Мышцы предплечья, отвечающие за сгибание пальцев, как правило, лучше развиты, чем мышцы, отвечающие за разгибание пальцев, и поэтому, если, из-за воздействия электрического тока, проходящего через руку человека, оба набора мышц будут пытаться сокращаться, «сгибающие» мышцы выиграют, сжимая пальцы в кулак.

Если проводник, от которого ток течет к пострадавшему, обращен к ладони его руки, это сжимающее действие заставит руку крепко схватить провод, тем самым ухудшив ситуацию, обеспечивая отличный контакт с проводом. И пострадавший совсем не сможет отпустить провод.

С медицинской точки зрения это состояние непроизвольного сокращения мышц называется тетанус (др.-греч., оцепенение, судорога). Электрики, знакомые с этим эффектом поражения электрическим током, часто называют обездвиженную жертву поражения электрическим током «зависшей в цепи». Вызванное током оцепенение можно прервать, только прервав протекание тока через пострадавшего.

Даже после остановки тока у пострадавшего некоторое время может не восстанавливаться контроль над своими мышцами, поскольку химический состав нейромедиаторов нарушен. Этот принцип был применен в устройствах «электрошокера», таких как тазеры, принцип действия которых основан на мгновенном поражении жертвы высоковольтным импульсом, передаваемым между двумя электродами. Правильно нанесенный удар электрошокером временно (на несколько минут) обездвиживает жертву.

Однако электрический ток может воздействовать не только на скелетные мышцы пострадавшего. Мышца диафрагмы, контролирующая легкие, и сердце (которое само по себе является мышцей) также могут «замереть» в состоянии оцепенения под действием электрического тока.

Даже токи, которые слишком слабы, чтобы вызвать оцепенение, часто способны перебивать сигналы нервных клеток настолько, что сердце не может биться должным образом, что приводит к состоянию, известному как фибрилляция. Фибриллирующее сердце скорее трепещет, чем бьется, и не может перекачивать кровь к жизненно важным органам тела.

В любом случае, при достаточно большом электрическом токе, проходящем через тело, смерть обязательно наступит от удушья и/или от остановки сердца. По иронии судьбы, медицинский персонал использует сильный разряд электрического тока, прикладываемый к груди пострадавшего, чтобы «подтолкнуть» бьющееся сердце к нормальному ритму биений.

Эта последняя деталь подводит нас к другой опасности поражения электрическим током, свойственной бытовым энергосистемам. Хотя наше первоначальное исследование электрических цепей будет сосредоточено почти исключительно на постоянном токе (который движется в непрерывном направлении в цепи), современные энергетические системы используют переменный ток.

Читайте так же:
Как вывести свет от розетки

Технические причины этого предпочтения использования переменного тока, а не постоянного тока, в энергосистемах не имеют отношения к этому обсуждению, но опасности, особенные для каждого вида электроэнергии, очень важны для темы безопасности.

То, как переменный ток влияет на организм, во многом зависит от его частоты. Низкочастотный (50-60 Гц) переменный ток используется в домашних хозяйствах США (60 Гц) и Европы (50 Гц); он может быть более опасным, чем высокочастотный переменный ток, и в 3-5 раз опаснее, чем постоянный ток того же напряжения и силы тока. Низкочастотный переменный ток вызывает длительное сокращение мышц (оцепенение, судороги), которое может прижать руку к источнику тока, продлевая воздействие. Постоянный ток, скорее всего, вызовет одиночное судорожное сокращение, которое часто заставляет пострадавшего отстраниться от источника тока.

Переменный характер переменного тока имеет большую тенденцию приводить нейроны стимулятора работы сердца в состояние фибрилляции, тогда как постоянный ток просто заставляет сердце останавливаться. Как только протекание тока электрического удара прекращается, у «замершего» сердца больше шансов восстановить нормальный ритм сердечных сокращений, чем у фибриллирующего.

Вот почему «дефибриллирующее» оборудование, используемое медиками скорой помощи, работает: дефибриллятор подает разряд постоянного тока, что останавливает фибрилляцию и дает сердцу шанс восстановиться.

В любом случае электрические токи, достаточно высокие, чтобы вызвать непроизвольное действие мышц, опасны, и их следует избегать любой ценой. В следующем разделе мы рассмотрим, как такие токи обычно входят в тело и выходят из него, и рассмотрим меры предосторожности против таких случаев.

Примеры воздействия электрического тока на организм человека в зависимости от силы тока Примеры воздействия электрического тока на организм человека в зависимости от силы тока

Приведите примеры использования теплового действия тока в быту технике

Электроток, проходящий по проводниковому элементу, за счет ударения свободных электронов об ионы и атомы нагревает его. Тепловое действие тока можно наблюдать во всех аспектах жизни человека: от работающих ламп накаливания и бытовых приборов до получения цветных металлов и добычи азота.

Самодельный нагревательный прибор с нихромовой спиралью, что нагревается под воздействием электротока

Самодельный нагревательный прибор с нихромовой спиралью, что нагревается под воздействием электротока

Тепловое действие электрического тока

Еще в девятнадцатом веке опыты по изучению проводимости свидетельствовали, что ток, проходящий по нагрузке, нагревает ее. Исследования показали, что нагревается не только нагрузка, но и проводники.

Тепловое действие электрического тока

Рис. 1. Тепловое действие электрического тока.

Данный факт легко объясним, если вспомнить, что электрический ток – это перемещение зарядов в веществе нагрузки. При движении заряды взаимодействуют с ионами кристаллической решетки, и отдают им часть энергии, которая и переходит в тепло.

Закон Джоуля-Ленца

Поскольку разность потенциалов (напряжение) на нагрузке равна работе, которую совершит единичный заряд, двигаясь по нагрузке, то для вычисления работы тока, необходимо напряжение умножить на заряд, прошедший через нагрузку. Заряд же равен произведению тока, проходящего по нагрузке, на время прохождения. Таким образом:

Детальным изучением теплового действия электрического тока в середине XIXв занимались независимо Д.Джоуль (Великобритания) и Э.Ленц (Россия).

Джоуль и Ленц

Рис. 2. Джоуль и Ленц.

Было выяснено, что если нагрузка неподвижна, то вся работа электрического тока в этой нагрузке перейдет в тепло:

Как правило, напряжение на элементах электрической цепи различно, а ток в ней общий. Поэтому для определения теплового действия удобнее выразить напряжение через ток, учитывая сопротивление:

То есть, количество тепла, образующееся в нагрузке, равно произведению значения тока в квадрате, сопротивления и времени. Этот вывод носит название Закона Джоуля-Ленца.

Иногда ток нагрузки неизвестен, но известно ее сопротивление и подводимое напряжение. В этом случае удобнее выразить ток через известные величины:

и, подставив в формулу выше, получаем:

Из данной формулы можно видеть интересный факт – если в нагревательной плите сгорит часть спирали, и мы просто исключим сгоревшие места, то сопротивление спирали уменьшится, а поскольку напряжение сети останется прежним, то тепло, выделяемое плитой, возрастет. Мощность плитки увеличится.

Практическое значение

Понятно, что количество выделяемого тепла зависит от плотности тока и проводимости определенного вещества. Наглядно соответствующие влияния можно регистрировать в ходе последовательного пропускания тока 2 и 50 А через контрольную медную жилу сечением 2 мм кв. Во втором эксперименте нагрев будет значительно сильнее. Его можно уменьшить, увеличив диаметр проводника.

Снижение потерь энергии

Рассмотренный пример демонстрирует нежелательное явление для линий электропередач. Использование части энергии на обогрев окружающего пространства увеличивает потери воздушных линий. Превышение порогового значения провоцирует разрушение жил, защитных оболочек. Чрезмерное повышение температуры – причина возникновения пожаров.

Подобные явления происходят, если выбрана чрезмерная сила тока, либо недостаточно поперечное сечение проводника. Количество тепла, выделяемого в линии, обратно пропорционально зависит от квадрата напряжения (U) на подключенном потребляющем устройстве. Повышением U можно уменьшить потери. Однако подобное действие увеличивает вероятность короткого замыкания, ухудшает общие параметры безопасности.

Читайте так же:
Установка двойного выключателя легранд с подсветкой своими руками

Выбор проводов для цепей

Отмеченные выше проблемы теплового разрушения в значительной мере зависят от удельного сопротивления (Rу). Для наглядности можно использовать материалы со значительно различающимися характеристиками.

Эксперимент с различными проводниками

Расчеты количества теплоты (Q, Дж) для образцов длиной 1 м сечением 1 мм кв. при силе тока 5А за 30 секунд:

  • медь – 12,75;
  • сталь – 75;
  • никелин – 315.

Особое внимание следует уделять параметрам силовых кабелей, которые должны сохранять целостность в процессе реальной эксплуатации. Как правило, бытовые линии монтируют в глубине строительных конструкций. Такой способ подразумевает хорошую защищенность от неблагоприятных внешних воздействий. Вместе с тем возрастают затраты на исправление ошибок и устранение последствий аварий.

Чтобы использовать кабельную продукцию правильно, следует руководствоваться тематическими нормативами, которые изложены в ПУЭ. Для упрощения выбора предлагаются специализированные таблицы, в которых приведены результаты расчетов с учетом следующих важных факторов:

  • тип изоляции;
  • длительность и величина перегрузок;
  • особенности прокладки.

Использование теплового действия электричества

Тепловое действие электрического тока находит широкое применение, в первую очередь, в нагревательных приборах.

Еще одним важным направлением использования теплового действия являются плавкие предохранители. Если необходимо отключить электрическую цепь при превышение допустимого тока, то в цепь можно включить плавкий предохранитель.

Устройство плавкого предохранителя

Рис. 3. Устройство плавкого предохранителя.

Это небольшая колба из негорючего материала, внутри которой проходит плавкая проволочка или лента, сопротивление которой рассчитано так, чтобы при превышении предельного тока она расплавилась, тем самым разорвав электрическую цепь.

Лампочка накаливания

Тепловое действие тока и открытие закона способствовали развитию электротехники и увеличению возможностей для использования электричества. То, как применяются результаты исследований, можно рассмотреть на примере обычной лампочки накаливания.

Она устроена таким образом, что внутри протягивается нить, изготовленная из вольфрамовой проволоки. Этот металл является тугоплавким с высоким удельным сопротивлением. При проходе через лампочку осуществляется тепловое действие электрического тока.

Энергия проводника трансформируется в тепловую, спираль нагревается и начинает светиться. Недостаток лампочки заключается в больших энергетических потерях, так как лишь за счет незначительной части энергии она начинает светиться. Основная же часть просто нагревается.

Чтобы лучше это понять, вводится коэффициент полезного действия, который демонстрирует эффективность работы и преобразования в электроэнергию. КПД и тепловое действие тока используются в разных областях, так как имеется множество устройств, изготовленных на основании этого принципа. В большей степени это нагревательные приборы, электрические плиты, кипятильники и другие подобные аппараты.

Использование теплового действия электрического тока в устройстве теплиц и инкубаторов

Электрический ток
Использование теплового действия электрического тока в устройстве теплиц и инкубаторов.

2. Тепловое действие электрического тока. Закон Джоуля-Ленца.

3. Использование теплового действия электрического тока в устройстве теплиц.

4. Использование теплового действия электрического тока в устройстве инкубаторов.

Современный мир уже немыслимо представить без электричества. Электрический ток используется человеком повсеместно. Бытовые электроприборы прочно заняли свое место в жилище человека, в промышленности, на транспорте и различных учреждениях тоже нельзя обойтись без использования электричества.

Однако сельские жители, особенно пожилого возраста по-прежнему продолжают относиться осторожно к использованию электрического тока.

Цель доклада: Показать, как можно использовать электрический ток для нужд сельского хозяйства.

Подобрать литературу по теме доклада

Анализ и обобщение источников литературы

Выступление с докладом перед аудиторией.

Тепловое действие электрического тока. Закон Джоуля-Ленца.

При прохождении электрического тока по проводнику в результате столкновений свободных электронов с его атомами и ионами проводник нагревается. Количество тепла, выделяемого в проводнике при прохождении электрического тока, определяется законом Джоуля — Ленца. Его формулируют следующим образом. Количество выделенного тепла Q равно произведению квадрата силы тока I2, сопротивления проводника R и времени t прохождения тока через проводник:

Количество тепла, выделяющегося в проводе, пропорционально объему провода и приращению температуры, а скорость отдачи тепла в окружающее пространство пропорциональна разности температур провода и окружающей среды.

В первое время после включения цепи разность температур провода и окружающей среды мала. Только небольшая часть тепла, выделяемого током, рассеивается в окружающую среду, а большая часть тепла остается в проводе и идет на его нагревание. Этим объясняется быстрый рост температуры провода в начальной стадии нагрева.

По мере увеличения температуры провода растет разность температур провода и окружающей среды, увеличивается количество тепла, отдаваемое проводом. В связи с этим рост температуры провода все более замедляется. Наконец, при некоторой температуре устанавливается тепловое равновесие: за одинаковое время количество теплоты выделяющегося в проводе становится равным количеству теплоты выделяющемуся во внешнюю среду.

Формула расчета и ее элементы

Суть явления понятна из упомянутого выше общего определения. Движущиеся электроны взаимодействуют с ионами вещества проводника с преобразованием механической энергии в теплоту. Увеличение силы тока повышает интенсивность процесса.

Читайте так же:
Что такое дренажный провод кабеля

Наглядный пример – электролиз. При опускании в раствор подключенных к батарее пластин положительно заряженные ионы и электроны движутся в противоположных направлениях. Достаточно высокий ток провоцирует перемещение примесей с последующим осаждением на поверхности электродов. Одновременно происходит нагрев жидкости.

При подключении к источнику медного проводника химические реакции отсутствуют. Если исключить механические воздействия (электромагнитная индукция, движение ионов в растворе), вся работа тока в соответствующей цепи будет направлена только на увеличение внутренней энергии вещества.

Действие электрического тока при подключении к жидкому и металлическому проводнику

Следовательно, во втором примере работу (A) можно принять равной увеличению энергетического потенциала, который выражается соответствующим количеством теплоты (Q). Основная формула:

где:

  • U – напряжение;
  • I – ток;
  • t – время.

Для удобства расчетов можно использовать иные эквиваленты на основе формул закона Ома:

  • U = I * R;
  • R – электрическое сопротивление проводника;
  • значит, Q = I2 * R * t.

Примеры действия электрического тока

Как известно, увидеть движущиеся заряды (электроны, ионы) мы не можем, так как они очень малы. Но как тогда можно обнаружить электрический ток?

ДЕЙСТВИЯ ЭЛЕКТРИЧЕСКОГО ТОКА

При протекании электрического тока могут происходить различные явления, которые называются действиями электрического тока.

ТЕПЛОВОЕ ДЕЙСТВИЕ ТОКА

Электрический ток, протекая по проводам, вызывает их нагревание.

Присоединим к полюсам источника тока железную или никелевую проволоку. Замкнув ключ, можно наблюдать, как проволока провиснет, т. е. она нагреется и удлинится. Таким образом её можно даже раскалить докрасна.

Именно на тепловом действии тока основана работа различных бытовых нагревательных приборов, таких, как электрический чайник, электрические плитки, утюги и др. Нить лампочки раскаляется и начинает светиться.

ХИМИЧЕСКОЕ ДЕЙСТВИЕ ТОКА

Как показывает опыт, на электродах, опущенных в раствор электролитов, происходит выделение чистого вещества. Этот процесс называется электролизом. Например, пропуская ток через раствор медного купороса, можно выделить чистую медь.

Электрический ток в металлах не вызывает никаких химических изменений. Химическое действие тока происходит только в растворах и расплавах электролитов.

МАГНИТНОЕ ДЕЙСТВИЕ ТОКА

На большой железный гвоздь намотаем тонкий изолированный провод. Концы провода через ключ соединим с источником тока.

Если замкнуть ключ, то гвоздь намагнитится и будет притягивать к себе гвоздики, железные стружки, опилки. С прекращением тока в проводнике магнитные свойства гвоздя исчезнут.

Явление взаимодействия катушки с током и магнита лежит в основе работы прибора, называемого гальванометром. С помощью гальванометра можно судить о наличии тока и его направлении. Стрелка прибора связана с подвижной катушкой. Когда в катушке появляется электрический ток, стрелка отклоняется.

МЕХАНИЧЕСКОЕ ДЕЙСТВИЕ ТОКА

Металлическую рамку соединим с источником тока. При пропускании электрического тока через рамку она остаётся висеть неподвижно. Но если эту рамку поместить между полюсами подковообразного магнита, то она начнёт поворачиваться.

В этом опыте мы наблюдали механическое действие электрического тока, которое заключается в том, что электрический ток при протекании по рамке, помещённой между полюсами магнита, вызывает её вращение.

Устройство гальванометра

Гальванометром прибор назвали в честь итальянского физика и врача Луиджи Гальвани. Этот прибор способен измерять маленькие электрические токи (постоянные).

На схемах прибор обозначают кружком, внутри которого расположена большая латинская буква G. На некоторых схемах внутри круга находится стрелка, направленная вертикально вверх.

  • подковообразный магнит и
  • находящуюся внутри него рамку, содержащую витки тонкого медного провода (рис. 8).

Подвижная рамка находится на оси и может вокруг нее поворачиваться.

К рамке прикреплена стрелка. Она указывает, на какой угол рамка повернулась во время протекания в ней электрического тока.

Действия электрического тока

Нажмите, чтобы узнать подробности

Химическое действие электрического тока состоит в том, что в некоторых растворах кислот (солей, щелочей) при прохождении через них электрического тока наблюдается выделение веществ.

Применение химического действия электрического тока Электролиз. Получение чистых металлов. Гальванопластика (электрохимический процесс, в ходе которого воссоздается форма изделия за счет осаждения на нем металла). Гальваностегия (электрохимический процесс покрытия одного металла другим, более устойчивым в механическом и химическом отношении)

Применение химического действия электрического тока

Получение чистых металлов.

Гальванопластика (электрохимический процесс, в ходе которого воссоздается форма изделия за счет осаждения на нем металла).

Гальваностегия (электрохимический процесс покрытия одного металла другим, более устойчивым в механическом и химическом отношении)

Магнитное действие электрического тока. Проводник, по которому идет ток, приобретает магнитные свойства и, подобно обычным магнитам, начинает притягивать к себе железные предметы.

Магнитное действие электрического тока. Проводник, по которому идет ток, приобретает магнитные свойства и, подобно обычным магнитам, начинает притягивать к себе железные предметы.

Применение магнитного действия электрического тока. Электрогенераторы, электродвигатели, трансформаторы. Микрофоны, громкоговорители. Электромагнит, электрозвонок и др.

Применение магнитного действия электрического тока.

Электрогенераторы, электродвигатели, трансформаторы.

Электромагнит, электрозвонок и др.

Взаимодействие между проводником с током и магнитом. Небольшую проволочную рамку, висящую на нитях, присоединим к полюсам источника тока. Рамка останется неподвижной. Поместим эту рамку между полюсами магнита. Она станет поворачиваться. Это явление используется в устройстве гальванометра.

Взаимодействие между проводником с током и магнитом.

Небольшую проволочную рамку, висящую на нитях, присоединим к полюсам источника тока. Рамка останется неподвижной.

Поместим эту рамку между полюсами магнита. Она станет поворачиваться.

Это явление используется в устройстве гальванометра.

Стрелка гальванометра связана с подвижной катушкой, находящейся в магнитном поле. Когда в катушке существует ток, стрелка отклоняется. С помощью гальванометра можно судить о наличии тока в цепи и его направлении.

Стрелка гальванометра связана с подвижной катушкой, находящейся в магнитном поле. Когда в катушке существует ток, стрелка отклоняется. С помощью гальванометра можно судить о наличии тока в цепи и его направлении.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector