Ele-prof.ru

Электро отопление
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Управление мощными тиристорами схемы

Управление мощными тиристорами схемы

Для управления мощностью в нагрузке при построении сварочных электронных агрегатов обычно применяется связка, состоящая из трансформатора и полупроводникового регулирующего элемента (тиристора). Для того чтобы выяснить, как запустить трансформатор на тиристоре 220 В – потребуется подробно изучить схему управления этим элементом.

Прежде всего, необходимо обратить внимание на следующие моменты:

  1. Трансформатор в этой цепочке необходим как звено системы, без которого невозможно формирование управляющих импульсов с заданными параметрами.
  2. При таком способе получения требуемой внешней характеристики применяется принцип фазового управления тиристором, подключенным последовательно с нагрузкой (смотрите фото справа).
  3. Рассматриваемая схема управления тиристорным сварочным трансформатором содержит полупроводниковый элемент, включенный во вторичную цепь преобразователя.

В состав управляющего модуля также входят специальный формирователь, выдающий импульсные сигналы для коммутации тиристоров ТЛ171, и выпрямительный блок на диодах В200. С их помощью устанавливаются требуемые значения выходных параметров (тока и напряжения).

Схема трансформатора

Принцип фазового управления

Используемый в рассмотренной выше схеме принцип нуждается в подробном исследовании, поскольку на его основе работает большинство современных электронных инверторов. Для понимания сути этих процессов необходимо ознакомиться с особенностями срабатывания управляемых приборов типа «тиристор», состоящих в следующем:

  • Фазовое регулирование в схемах управления тиристорными трансформаторами предполагает изменение промежутка времени, в течение которого коммутирующие элементы находятся в открытом состоянии.
  • В результате этого изменяется мощность, отдаваемая ими непосредственно в нагрузочные цепи.
  • Благодаря электронному способу управления параметрами выходного тока удается обеспечить качественную и плавную регулировку выходной мощности, существенно повышающую устойчивость рабочей дуги.

Трансформатор

В некоторых схемах регулятор устанавливается в цепь первичной обмотки и состоит из двух встречно включенных тиристоров. При таком способе регулирования каждый из коммутаторов проводит ток одной полярности; при этом в нагрузке он остается переменным. Моменты включения и отсечки мощных тиристоров определяются временем поступления импульсов с формирующего модуля (так называемым «углом управления»).

Трансформаторные ФИУ тиристоров

Трансформаторные ФИУ применяются в схемах управления однооперационными тиристорами [3]. Требования, предъявляемые к подобным схемам, обусловлены особенностями переключения структуры тиристора, параметрами цепи управления и нагрузкой преобразователя. Перечислим главные:

1. Для исключения локального перегрева структуры необходимо обеспечить минимально гарантированную начальную площадь включения тиристора. Это достигается подачей импульса управления с крутым фронтом нарастания тока (0.1…0.3 мкс) и минимально необходимой амплитудой, которая определяется типом тиристора (0.5…5 А).

2. Для гарантированного отпирания тиристора необходимо обеспечить минимальную длительность импульса управления (tp

3. В схемах с большой индуктивной нагрузкой, а также в выпрямительных устройствах, работающих на противонаправленных Э.Д.С., необходимо поддерживать на управляющем электроде тиристора длительные сигналы управления (до 1 мс) для обеспечения гарантированного включения.

4. Рабочая точка нагрузки управляющего электрода должна находиться в зоне оптимального управления (справочные данные) (рис. 2.21). Параметры управляющего сигнала, IG= 1 …5 А и VG = 5…20 В.

5. Характеристики трансформатора должны обеспечивать изоляцию между цепями управления и силовой частью (напряжение изоляции > 2.5 кВ).

6. ФИУ должен обеспечивать помехоустойчивость тиристорных схем.

Построение схемы ФИУ начинают с выбора импульсного трансформатора, (пункты 1, 2, 5).

предлагает импульсные трансформаторы серии SKPT с параметрами: — напряжение изоляции 2.5…4 кВ;

— выходное напряжение 5… 15 В;

— импульсный выходной ток 0.1…1 А;

— время нарастания фронта тока 0.3…5 мкс;

— ширина импульса на выходе 2.5…4 кВ;

— частота переключения 5… 10 кГц;

— вольт-секундный показатель 330…350 В-мкс.


Типовая схема трансформаторного ФИУ с ограничивающим резистором в первичной обмотке представлена на рис. 2.22.

Напряжение на вторичной обмотке трансформатора определяется входной характеристикой цепи управления и прямым падением напряжения на открытом диоде. Для заданной длительности импульса управления нельзя превышать вольт-секундный показатель импульсного трансформатора.

Влияние индуктивности намагничивания проявляется в уменьшении амплитуды импульса управления с течением времени. На рис. 2.23 представлены осциллограммы тока и напряжения в первичной и выходной обмотке трансформатора.

В схемах с большой индуктивностью в цепи нагрузки рекомендуется использовать пакетный режим передачи импульсов, что позволяет увеличивать длительность импульса управления без насыщения трансформатора (рис. 2.24). Диод, включенный последовательно с входной цепью тиристора, поднимает порог отпирания ключа на величину напряжения смещения, что повышает помехоустойчивость схемы.

Дополнительные меры по защите от помех и наводок: (рис.2.25):

1. Параллельно входной цепи тиристора подключают RС-цепь, шунтирующую высокочастотные помехи.

2. Подключение к входной цепи осуществляют витыми парами и экранированными проводами.

3. Исключают использование общих линий связи между силовым выводом катода тиристора и выводом цепи управления.

4. Используют экранирующую изоляцию между обмотками трансформатора, что увеличивает индуктивность рассеяния. Используется последовательное или параллельное соединение тиристорных ключей, при этом применяется общий трансформатор с несколькими вторичными обмотками для управления группой тиристоров. Наиболее приемлемо параллельное соединение отдельных трансформаторов. При последовательном соединении тиристоров, т.е. при высоких анодных напряжениях, применение общего трансформатора невыгодно, так как при этом требование к напряжению изоляции определяется максимальным анодным напряжением всей группы последовательных ключей. С увеличением напряжения изоляции растет индуктивность рассеяния, что не позволяет обеспечить необходимый фронт импульса управления.

Поэтому на повышенных анодных напряжениях (более 6…10 кВ) применяется последовательное и каскадное соединение отдельных импульсных трансформаторов (рис. 2.26).

Последовательное соединение трансформаторов позволяет получить на всех ключах одинаковую форму тока управления.

Рис. 2.25 Рис. 2.26

Однако изоляция общего кабеля рассчитывается на максимальное напряжение, что увеличивает емкость связи между обмотками. В каскадном соединении трансформаторов паразитные емкости связи включаются последовательно, что обеспечивает повышение помехозащищенности ФИУ. Кроме этого, напряжение изоляции может выбираться в N раз меньше максимального анодного напряжения (где N – число последовательных ключей).

Что будет с Землей, если ось ее сместится на 6666 км? Что будет с Землей? — задался я вопросом…

Живите по правилу: МАЛО ЛИ ЧТО НА СВЕТЕ СУЩЕСТВУЕТ? Я неслучайно подчеркиваю, что место в голове ограничено, а информации вокруг много, и что ваше право…

Что делать, если нет взаимности? А теперь спустимся с небес на землю. Приземлились? Продолжаем разговор…

Конфликты в семейной жизни. Как это изменить? Редкий брак и взаимоотношения существуют без конфликтов и напряженности. Через это проходят все…

Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:

Импульсная трансформация

Импульсная стабилизация, как способ получения устойчивой сварочной дуги, пользуется все большей популярностью. При построении таких схем помимо основного преобразователя Т1 в них применяется еще один (импульсный) Т2 с коэффициентом передачи порядка единицы.

Схема упрощенная

При открывании любого из включенных в первичную цепь тиристоров V1,V2 в ней формируется короткий токовый всплеск. Он протекает через конденсатор С1 и наводит во вторичной обмотке Т2 импульс тока iи (фото слева). Достаточное для уверенного зажигания напряжение в режиме холостого хода должно быть не менее 500 Вольт, а ток в нагрузке может достигать 100 Ампер (в кратковременном импульсе).

Читайте так же:
Завод изготовитель автоматического выключателя

Обратите внимание! Так как время подачи очередного импульса до сотых долей секунды совпадает с моментом открывания каждого из тиристоров – в специальной фазовой синхронизации такая схема не нуждается.

Требуемые рабочие характеристики удается получить за счет обратной связи (ОС) по основным выходным параметрам (напряжению и току).

Плата с деталями регулятора напряжения на тиристоре

Самодельный импульсный регулятор на тиристоре

Рабочая схема

Упрощенная схема сварочного аппарата

Для того чтобы произвести расчет трансформатора для управления тиристором – прежде необходимо ознакомиться хотя бы с одним из вариантов их изготовления. В предлагаемую схему самодельного импульсного трансформатора, работающего от сети 220 В, входят следующие основные узлы (фото ниже):

  • Силовой блок тиристорного регулятора.
  • Электронная схема управления, запускающаяся от импульсной обмотки.

Важно! Импульсная обмотка III и питания I индуктивно связываются через конденсатор С.

Амплитуда и длительность формируемых импульсов определяется соотношением числа витков в этих катушках, а также номиналом емкости. Для того чтобы изготовить агрегат по приведенной выше схеме можно взять любой трансформатор от отслужившего свой срок оборудования, удовлетворяющего следующим требованиям:

  • обеспечивать требуемое напряжение для надежного зажигания дуги в режиме холостого хода;
  • длительно выдерживать сварочный ток без перегрева обмоток;
  • соответствовать требованиям ПУЭ в части электрической безопасности.

↑ Схема и описание силовой части регулятора мощности


Силовой блок выдает напряжение +5V, формирует импульсы перехода сети через ноль и содержит схему управления нагрузкой с помощью симистора. Детектор перехода сетевого напряжения через ноль
взят из журнала «Радиолоцман». Он выдает импульсы перехода с интервалом 10 мсек. Конденсатор С6 заряжается до 25 Вольт — уровня ограничения стабилитрона D12. Входной ток ограничивается резистором R2. Когда выпрямленное входное напряжение опускается ниже напряжения на конденсаторе С6, открывается транзистор Q3 и генерирует импульс длительностью в несколько сотен микросекунд. Оптрон U2 обостряет фронты и делает выходной импульс более прямоугольным.

Схема источника +5 Вольт

подробно описана в журнале «Радио» № 11 за 2007 год, стр. 30, в статье «Доработка ЗУ сотового телефона». Добавлен стабилизатор на 78L05 для уменьшения помех и для дополнительной стабилизации. Работа схемы: Напряжение сети через резистор R1, который выполняет функции предохранителя, поступает на мостовой выпрямитель на диодах D1 —D4 и сглаживается конденсатором С1. Стабилизация выходного напряжения осуществляется косвенным методом. Для этого напряжение со второй обмотки трансформатора выпрямляется диодом D5, сглаживается конденсатором С2 и через стабилитрон D6 поступает на базу транзистора. Для защиты источника в момент подключения к сети, а также при резких колебаниях напряжения в сети, установлена защита по току Q2 на элементах Q1, R7 на уровне 60…70 мА.

Подключение симистора

выполнено по схеме из даташита на оптосимистор MOC3052. Когда силовой блок проектировался, предполагалось, его применение только в режиме с пропуском периодов, поэтому в схеме отсутствуют фильтры для защиты от помех. Для работы в режиме фазового регулирования их желательно добавить, хотя бы простейший LC фильтр перед симистором.

Особенности изготовления магнитопровода

Для изготовления сердечника устройства, обеспечивающего управление тиристорами через трансформатор импульсный, лучше всего подойдут два ферритовых кольца. Их можно снять со списанного оборудования, проследив за тем, чтобы общая площадь поперечного сечения кольцевых заготовок была не менее 50 см2.

Все рабочие поверхности магнитопровода изолируются лакотканью, а сами кольца затем скрепляются хлопчатобумажной лентой, образуя фигуру в виде восьмерки.

Поверх изоляционного слоя впоследствии наматываются питающая, импульсная и силовая обмотки трансформатора. Для увеличения площади поперечного сечения каждая из катушек разбивается на две половинки (полуобмотки) и разносится на разные участки кольца магнитопровода. Этот прием позволяет сэкономить намоточное место и без особых проблем разместить все три рабочие катушки.

Магнитопровод трансформатора

Намотка

Для намотки всех катушек тиристорного преобразователя берется провод в лаковой изоляции, дополнительно защищенный сверху оболочкой из ткани. Для достижения требуемого магнитного эффекта потребуются медные жилы диаметром не менее 3-х мм.

Дополнительная информация: Если проводников такого типоразмера найти не удается – можно взять жилу меньшего диаметра (1,7 мм, например) и наматывать ее на сердечники сложенной вдвое.

Трансформатор силовой

Для получения необходимых выходных показателей по току и напряжению потребуется намотать все катушки примерно по 210 двойных витков.

Качественный преобразователь, используемых с целью управления мощными тиристорами импульсного трансформатора, удается собрать лишь при условии соблюдения правил намотки (плотном прилегании отдельных проводников). Для этого желательно воспользоваться специальным станком, обеспечивающим хороший натяг каждой жилы.

В заключение отметим, что импульсные трансформаторы для управления тиристорами широко используются в современном электронном оборудовании (включая сварочные агрегаты). Для того чтобы научиться собирать эти устройства, а затем запускать в эксплуатацию – сначала придется внимательно ознакомиться с принципами их работы.

Применение тиристора и симистора: принцип работы и способы управления

Тиристор — электронный компонент, изготовленный на основе полупроводниковых материалов, может состоять из трёх или более p-n-переходов и имеет два устойчивых состояния: закрытое (низкая проводимость), открытое (высокая проводимость).

Это сухая формулировка, которая для тех, кто только начинает осваивать электротехнику, абсолютно ни о чём не говорит. Давайте разберём принцип работы этого электронного компонента для обычных людей, так сказать, для чайников, и где его можно применить. По сути, это электронный аналог выключателей, которыми вы каждый день пользуетес

Есть много типов этих элементов, обладающие различными характеристиками и имеющие различные области применения. Рассмотрим обычный однооперационный тиристор.

Способ обозначения на схемах показан на рисунке 1.

Электронный элемент имеет следующие выводы:

  • анод — положительный вывод;
  • катод — отрицательный вывод;
  • управляющий электрод G.

Принцип действия тиристора

Основное применение этого типа элементов — это создание на их основе силовых тиристорных ключей для коммутации больших токов и их регулирования. Включение выполняется сигналом, переданным на управляющий электрод. При этом элемент является не полностью управляемым, и для его закрытия необходимо применение дополнительных мер, которые обеспечат падение величины напряжения до нуля.

Если говорить, как работает тиристор простым языком, то он, по аналогии с диодом, может проводить ток только в одном направлении, поэтому при его подключении нужно соблюдать правильную полярность. При подаче напряжения к аноду и катоду этот элемент будет оставаться закрытым до момента, когда на управляющий электрод будет подан соответствующий электрический сигнал. Теперь, независимо от наличия или отсутствия управляющего сигнала, он не изменит своего состояния и останется открытым.

Условия закрытия тиристора:

  1. Снять сигнал с управляющего электрода;
  2. Снизить до нуля напряжение на катоде и аноде.

Для сетей переменного тока выполнение этих условий не вызывает особых трудностей. Синусоидальное напряжение, изменяясь от одного амплитудного значения до другого, снижается до нулевой величины, и если в этот момент управляющего сигнала нет, то тиристор закроется.

В случае использования тиристоров в схемах постоянного тока для принудительной коммутации (закрытия тиристора) используют ряд способов, наиболее распространённым является использование конденсатора, который был предварительно заряжен. Цепь с конденсатором подключается к схеме управления тиристором. При подключении конденсатора в цепь произойдёт разряд на тиристор, ток разряда конденсатора будет направлен встречно прямому току тиристора, что приведёт к уменьшению тока в цепи до нулевого значения и тиристор закроется.

Читайте так же:
Выключатель системы блокировки двигателя форд фокус 2 где находится

Можно подумать, что применение тиристоров неоправданно, не проще ли использовать обычный ключ? Огромным плюсом тиристора является то, что он позволяет коммутировать огромные токи в цепи анода-катода при помощи ничтожно малого управляющего сигнала, поданного в цепь управления. При этом не возникает искрения, что немаловажно для надёжности и безопасности всей схемы.

Схема включения

Схема управления может выглядеть по-разному, но в простейшем случае схема включения тиристорного ключа имеет вид, показанный на рисунке 2.

К аноду присоединена лампочка L, а к ней выключателем К2 подключается плюсовая клемма источника питания G. B. Катод соединяется с минусом питания.

После подачи питания выключателем К2 к аноду и катоду будет приложено напряжение батареи, но тиристор остаётся закрытым, лампочка не светится. Для того чтобы включить лампу, необходимо нажать на кнопку К1, сигнал через сопротивление R будет подан на управляющий электрод, тиристорный ключ изменит своё состояние на открытое, и лампочка загорится. Сопротивление ограничивает ток, подаваемый на управляющий электрод. Повторное нажатие на кнопку К1 никакого влияния на состояние схемы не оказывает.

Для закрытия электронного ключа нужно отключить схему от источника питания выключателем К2. Этот тип электронных компонентов закроется, и в случае снижения напряжения питания на аноде до определённой величины, которая зависит от его характеристик. Вот так можно описать, как работает тиристор для чайников.

Характеристики

К основным характеристикам можно отнести следующие:

  • Максимально допустимый прямой ток — наибольшая возможная величина тока открытого элемента;
  • Максимально допустимый обратный ток — ток при максимальном обратном напряжении;
  • Прямое напряжение — падение величины напряжения при максимальном токе;
  • Обратное напряжение — наибольшая допустимая величина напряжения в закрытом состоянии;
  • Напряжение включения — наименьшее напряжение при котором сохраняется работоспособность электронного устройства;
  • Минимальный и максимальный ток управляющего электрода;
  • Максимально допустимая рассеиваемая мощность.

Рассматриваемые элементы, кроме электронных ключей, часто применяются в регуляторах мощности, которые позволяют изменять подводимую к нагрузке мощность за счёт изменения среднего и действующего значений переменного тока. Величина тока регулируется изменением момента подачи на тиристор открывающего сигнала (за счёт варьирования угла открывания). Углом открытия (регулирования) называется время от начала полупериода до момента открытия тиристора.

Типы данных электронных компонентов

Существует немало различных типов тиристоров, но наиболее распространены, помимо тех что мы рассмотрели выше, следующие:

  • динистор — элемент, коммутация которого происходит при достижении определённого значения величины напряжения, приложенного между анодом и катодом;
  • симистор;
  • оптотиристор, коммутация которого осуществляется световым сигналом.

Симисторы

Хотелось бы более подробно остановиться на симисторах. Как говорилось ранее, тиристоры могут проводить ток только в одном направлении, поэтому при установке их в цепи переменного тока, такая схема регулирует один полупериод сетевого напряжения. Для регулирования обоих полупериодов необходимо установить встречно-параллельно ещё один тиристор либо применить специальные схемы с использованием мощных диодов или диодных мостов. Все это усложняет схему, делает её громоздкой и ненадёжной.

Вот для таких случаев и был изобретён симистор. Поговорим о нем и о принципе работы для чайников. Главное отличие симисторов от рассмотренных выше элементов заключается в способности пропускать ток в обоих направлениях. По сути, это два тиристора с общим управлением, подключённые встречно-параллельно (рисунок. 3 А).

Условное графическое обозначение этого электронного компонента показано на Рис. 3 В. Следует заметить, что называть силовые выводы анодом и катодом будет не корректно, так как ток может проводиться в любом направлении, поэтому их обозначают Т1 и Т2. Управляющий электрод обозначается G. Для того чтобы открыть симистор, необходимо подать управляющий сигнал на соответствующий вывод. Условия для перехода симистора из одного состояния в другое и обратно в сетях переменного тока не отличаются от способов управления, рассмотренных выше.

Применяется этот тип электронных компонентов в производственной сфере, бытовых устройствах и электроинструментах для плавного регулирования тока. Это управление электродвигателями, нагревательными элементами, зарядными устройствами.

В завершение хотелось бы сказать, что и тиристоры и симисторы, коммутируя значительные токи, обладают весьма скромными размерами, при этом на их корпусе выделяется значительная тепловая мощность. Проще говоря, они сильно греются, поэтому для защиты элементов от перегрева и теплового пробоя используют теплоотвод, который в простейшем случае представляет собой алюминиевый радиатор.

Тиристор для чайников: схема включения и способы управления

Схема подключения ку202

Тиристор — электронный компонент, изготовленный на основе полупроводниковых материалов, может состоять из трёх или более p-n-переходов и имеет два устойчивых состояния: закрытое (низкая проводимость), открытое (высокая проводимость).

Это сухая формулировка, которая для тех, кто только начинает осваивать электротехнику, абсолютно ни о чём не говорит. Давайте разберём принцип работы этого электронного компонента для обычных людей, так сказать, для чайников, и где его можно применить. По сути, это электронный аналог выключателей, которыми вы каждый день пользуетес

Есть много типов этих элементов, обладающие различными характеристиками и имеющие различные области применения. Рассмотрим обычный однооперационный тиристор.

Способ обозначения на схемах показан на рисунке 1.

Электронный элемент имеет следующие выводы:

  • анод — положительный вывод;
  • катод — отрицательный вывод;
  • управляющий электрод G.

Принцип действия тиристора

Обозначение тиристора

Основное применение этого типа элементов — это создание на их основе силовых тиристорных ключей для коммутации больших токов и их регулирования. Включение выполняется сигналом, переданным на управляющий электрод. При этом элемент является не полностью управляемым, и для его закрытия необходимо применение дополнительных мер, которые обеспечат падение величины напряжения до нуля.

Если говорить, как работает тиристор простым языком, то он, по аналогии с диодом, может проводить ток только в одном направлении, поэтому при его подключении нужно соблюдать правильную полярность. При подаче напряжения к аноду и катоду этот элемент будет оставаться закрытым до момента, когда на управляющий электрод будет подан соответствующий электрический сигнал. Теперь, независимо от наличия или отсутствия управляющего сигнала, он не изменит своего состояния и останется открытым.

Условия закрытия тиристора:

  1. Снять сигнал с управляющего электрода;
  2. Снизить до нуля напряжение на катоде и аноде.

Для сетей переменного тока выполнение этих условий не вызывает особых трудностей. Синусоидальное напряжение, изменяясь от одного амплитудного значения до другого, снижается до нулевой величины, и если в этот момент управляющего сигнала нет, то тиристор закроется.

В случае использования тиристоров в схемах постоянного тока для принудительной коммутации (закрытия тиристора) используют ряд способов, наиболее распространённым является использование конденсатора, который был предварительно заряжен. Цепь с конденсатором подключается к схеме управления тиристором. При подключении конденсатора в цепь произойдёт разряд на тиристор, ток разряда конденсатора будет направлен встречно прямому току тиристора, что приведёт к уменьшению тока в цепи до нулевого значения и тиристор закроется.

Читайте так же:
Выключатель с у 2кл прима

Можно подумать, что применение тиристоров неоправданно, не проще ли использовать обычный ключ? Огромным плюсом тиристора является то, что он позволяет коммутировать огромные токи в цепи анода-катода при помощи ничтожно малого управляющего сигнала, поданного в цепь управления. При этом не возникает искрения, что немаловажно для надёжности и безопасности всей схемы.

Схема включения

Схема тиристорного ключа

Схема управления может выглядеть по-разному, но в простейшем случае схема включения тиристорного ключа имеет вид, показанный на рисунке 2.

К аноду присоединена лампочка L, а к ней выключателем К2 подключается плюсовая клемма источника питания G. B. Катод соединяется с минусом питания.

После подачи питания выключателем К2 к аноду и катоду будет приложено напряжение батареи, но тиристор остаётся закрытым, лампочка не светится. Для того чтобы включить лампу, необходимо нажать на кнопку К1, сигнал через сопротивление R будет подан на управляющий электрод, тиристорный ключ изменит своё состояние на открытое, и лампочка загорится. Сопротивление ограничивает ток, подаваемый на управляющий электрод. Повторное нажатие на кнопку К1 никакого влияния на состояние схемы не оказывает.

Для закрытия электронного ключа нужно отключить схему от источника питания выключателем К2. Этот тип электронных компонентов закроется, и в случае снижения напряжения питания на аноде до определённой величины, которая зависит от его характеристик. Вот так можно описать, как работает тиристор для чайников.

Характеристики

К основным характеристикам можно отнести следующие:

    Максимально допустимый прямой ток — наибольшая возможная величина тока открытого элемента;
  • Максимально допустимый обратный ток — ток при максимальном обратном напряжении;
  • Прямое напряжение — падение величины напряжения при максимальном токе;
  • Обратное напряжение— наибольшая допустимая величина напряжения в закрытом состоянии;
  • Напряжение включения — наименьшее напряжение при котором сохраняется работоспособность электронного устройства;
  • Минимальный и максимальный ток управляющего электрода;
  • Максимально допустимая рассеиваемая мощность.

Рассматриваемые элементы, кроме электронных ключей, часто применяются в регуляторах мощности, которые позволяют изменять подводимую к нагрузке мощность за счёт изменения среднего и действующего значений переменного тока. Величина тока регулируется изменением момента подачи на тиристор открывающего сигнала (за счёт варьирования угла открывания). Углом открытия (регулирования) называется время от начала полупериода до момента открытия тиристора.

Типы данных электронных компонентов

Существует немало различных типов тиристоров, но наиболее распространены, помимо тех что мы рассмотрели выше, следующие:

  • динистор — элемент, коммутация которого происходит при достижении определённого значения величины напряжения, приложенного между анодом и катодом;
  • симистор;
  • оптотиристор, коммутация которого осуществляется световым сигналом.

Симисторы

Условное обозначение симистора

Хотелось бы более подробно остановиться на симисторах. Как говорилось ранее, тиристоры могут проводить ток только в одном направлении, поэтому при установке их в цепи переменного тока, такая схема регулирует один полупериод сетевого напряжения. Для регулирования обоих полупериодов необходимо установить встречно-параллельно ещё один тиристор либо применить специальные схемы с использованием мощных диодов или диодных мостов. Все это усложняет схему, делает её громоздкой и ненадёжной.

Вот для таких случаев и был изобретён симистор. Поговорим о нем и о принципе работы для чайников. Главное отличие симисторов от рассмотренных выше элементов заключается в способности пропускать ток в обоих направлениях. По сути, это два тиристора с общим управлением, подключённые встречно-параллельно (рисунок. 3 А).

Условное графическое обозначение этого электронного компонента показано на Рис. 3 В. Следует заметить, что называть силовые выводы анодом и катодом будет не корректно, так как ток может проводиться в любом направлении, поэтому их обозначают Т1 и Т2. Управляющий электрод обозначается G. Для того чтобы открыть симистор, необходимо подать управляющий сигнал на соответствующий вывод. Условия для перехода симистора из одного состояния в другое и обратно в сетях переменного тока не отличаются от способов управления, рассмотренных выше.

Применяется этот тип электронных компонентов в производственной сфере, бытовых устройствах и электроинструментах для плавного регулирования тока. Это управление электродвигателями, нагревательными элементами, зарядными устройствами.

В завершение хотелось бы сказать, что и тиристоры и симисторы, коммутируя значительные токи, обладают весьма скромными размерами, при этом на их корпусе выделяется значительная тепловая мощность. Проще говоря, они сильно греются, поэтому для защиты элементов от перегрева и теплового пробоя используют теплоотвод, который в простейшем случае представляет собой алюминиевый радиатор.

Тиристоры: принцип работы, назначение, характеристики, проверка работоспособности

Тиристор представляет собой вид полупроводниковых приборов, предназначенный для однонаправленного преобразования тока (т.е. ток пропускается только в одну сторону).

Этот преобразователь имеет два устойчивых состояния: закрытое (состояние низкой проводимости) и открытое (состояние высокой проводимости). Назначение тиристора – выполнение функции электроключа, особенность которого – невозможность самостоятельного переключения в закрытое состояние. Прибор выполняет функции коммутатора разомкнутой цепи и ректификационного диода в сетях постоянного тока. Основным материалом при производстве этого полупроводникового устройства является кремний. Корпус изготавливается из полимерных материалов или металла – для моделей, работающих с большими токами.

Устройство тиристора и области применения

В состав прибора входят 3 электрода:

  • анод;
  • катод;
  • управляющий электрод.

В отличие от двухслойного диода, тиристор состоит из 4-х слоев – p-n-p-n. Оба устройства пропускают ток в одну сторону. На большинстве старых моделей его направление обозначается треугольником. Внешнее напряжение подается знаком «-» на катодный электрод (область с электропроводностью n-типа), «+» – на анодный электрод (область с электропроводностью p-типа).

Тиристоры применяют в сварочных инверторах, блоках питания зарядного устройства для автомобиля, в генераторах, для устройства простой сигнализации, реагирующей на свет.

Принцип работы тиристоров

В специализированной литературе тиристор называется «однооперационным» и относится к группе не полностью управляемых радиодеталей. Он переходит в активное состояние при получении импульса определенной полярности от объекта управления. На скорость активации и последующее функционирование оказывают влияние:

  • характер нагрузки – индуктивная, реактивная;
  • величина тока нагрузки;
  • скорость и амплитуда увеличения управляющего импульса;
  • температура среды устройства;
  • уровень напряжения.

Переключение из одного состояния в другое осуществляется с помощью управляющих сигналов. Для полного отключения тиристора требуется выполнить дополнительные действия. Выключение осуществляется несколькими способами:

  • естественное выключение (естественная коммутация);
  • принудительное выключение (принудительная коммутация), этот вариант может осуществляться множеством способов.

При эксплуатации возможны незапланированные переключения из одного положения в другое, которые провоцируются перепадами характеристик электроэнергии и температуры.

Классификационные признаки

По способу управления различают следующие виды тиристоров:

Диодные (динисторы)

Активируются импульсом высокого напряжения, подаваемым на анод и катод. В конструкции присутствуют 2 электрода, без управляющего.

Триодные (тринисторы)

Разделяются на две группы. В первой управляющее напряжение поступает катод и электрод управления, во второй – на анод и управляющий электрод.

Читайте так же:
Блок выключателей для кухни ванной туалета

Симисторы

Выполняют функции двух включенных параллельно тиристоров.

Оптотиристоры

Их функционирование осуществляется под действием светового потока. Функцию управляющего электрода выполняет фотоэлемент.

По обратной проводимости тиристоры разделяются на:

  • обратно проводящие;
  • обратно непроводящие;
  • с ненормируемым обратным значением напряжения;
  • пропускающие токи в двух направлениях.

Основные характеристики тиристоров, на которые стоит обратить внимание при покупке

  • Максимально допустимый ток. Эта величина характеризует наибольшее значение тока открытого тиристора. У мощных устройств она составляет несколько сотен ампер.
  • Максимально допускаемый обратный ток.
  • Прямое напряжение. Этот параметр тиристора равен падению напряжения при максимально возможном токе.
  • Обратное напряжение. Характеризует максимально допустимое напряжение на устройстве, находящемся в закрытом состоянии, при котором оно не утрачивает способность выполнять свои функции.
  • Напряжение включения. Это наименьшая величина, при которой возможно функционирование тиристора.
  • Минимальный ток управляющего электрода. Равен величине тока, которого достаточно для активации устройства.
  • Наибольшая допустимая рассеиваемая мощность.

Проверка тиристора на исправность

Прибор можно проверить несколькими способами, один из них – использование специального самодельного тестера, собираемого по представленной ниже схеме:

Такая схема предназначена для работы при напряжении 9-12 В. Для других значений напряжения питания производят перерасчет величин R1-R3.

  • К аноду подключают положительный полюс, к катоду подводят «-».
  • На управляющий электрод с помощью кнопки SA подают сигнал к открытию устройства.
  • Если светодиод загорается до нажатия кнопки SA или не загорается после нажатия, то прибор является неработоспособным.

Заключение

Тиристор — не полностью управляющий ключ. Если есть ток удержания, то перейдя в открытое состояние, тиристор остается в нем, даже если прекращать подавать сигнал на управляющий переход.

Твердотельные реле, тиристорные контакторы

В процессе различных переключений с использованием электромагнитных пускателей, реле, контакторов и другой аппаратуры, в коммутирующем органе изменяется электрическое сопротивление. В данных приборах эту функцию выполняет промежуток между контактами. В замкнутом состоянии сопротивление становится очень маленьким, а по мере размыкания контактов оно начинает возрастать.

Такие изменения происходят очень быстро, в скачкообразном порядке и сопровождаются разрывом цепи. В некоторых случаях требуется избежать такого разрыва, поэтому в таких цепях для коммутации используются бесконтактные приборы. Типичным представителем этой группы является тиристорный контактор, в состав которого входят тиристоры, имеющие нелинейное электрическое сопротивление, способное изменяться в сторону увеличения или уменьшения.

Принцип действия тиристорного контактора

Действие тиристорного контактора основано на бесконтактной коммутации. Данное физическое явление заключается в изменяющейся проводимости полупроводников, подключаемых в цепь вместе с нагрузкой. Во время работы не наблюдается видимых разрывов цепи, а сам процесс выглядит следующим образом: когда цепь выключена – проводимость полупроводника резко снижается, а сопротивление может достигать нескольких десятков МОм. После включения проводимость элемента восстанавливается, а сопротивление стремится к нулю и измеряется уже в миллиОмах (мОм).

Полупроводниковыми приборами служат различные виды симисторов, тиристоров и транзисторов, включаемых последовательно с нагрузкой в электрическую цепь. Их действие основано на явлении электронно-дырочного перехода (р-п), обеспечивающего одностороннюю проводимость от анода (р) к катоду (п).

Тиристорный контактор

На этих же принципах осуществляется работа тиристорного контактора или переключателя переменного тока. Наиболее часто используются схемы со встречно-параллельным включением тиристоров VS1 и VS2, отмеченных на рисунке. Вырабатывание импульсов производится блоком управления при переходе напряжения через нулевую отметку. Под действием импульсов тиристоры открываются поочередно, за счет их сдвига между собой на 180 градусов. В результате, в цепи начинается движение синусоидального переменного тока. Когда мгновенное значение тока нагрузки снижается, тиристоры выключаются.

Принцип работы тиристорного пускателя трехфазного переменного тока.

Принцип работы пускателя заключается в бесконтактном включении и отключении нагрузки, что осуществляется тремя силовыми ключами (рис.2.4), каждый из которых представляет собой сочетание двух тиристоров, включенных встречно-параллельно, например BУ1 и ВУ2. Один из них пропускает ток в первую половину периода, а другой – во вторую. Цепь включается подачей импульсов управления, синхронных с анодным напряжением. Импульсы управления тиристорами формируются из анодного напряжения тиристоров. В исходном состоянии все тиристоры закрыты и находятся под фазным напряжением. После включения герконового контакта КГ-1 и замыкания контактов реле К, положительная полуволна напряжения сети окажется приложенной к аноду тиристора ВУ1 (рис. 2.4). Тогда от анода к катоду тиристора ВУ1 через управляющий переход тиристора ВУ2, резистор R1 контакт реле К и управляющий переход тиристора ВУ1.управления будет протекать ток. Тиристор ВУ1 откроется. С открытием тиристора автоматически снимается сигнал управления, так как падение напряжения на открытом тиристоре не превышает 1 В. При переходе напряжение на нем через нуль тиристор ВУ1 закрывается. Теперь положительная полуволна напряжения сети будет приложена к аноду тиристора ВУ2; тиристор ВУ2 откроется и с него автоматически снимется сигнал управления. Импульсы управления поступают на тиристоры синхронно с напряжением сети в начале каждого положительного полупериода, т.е. через 360 эл.°.

Управление тиристорного пускателя осуществляется при помощи герконовых элементов (герметических контактов) КГ1 и КГ2, они замыкаются при воздействии на них магнитных полей. Герконы имеют ряд преимуществ по сравнению с кнопочными выключателями:

1) относительно низкая стоимость;

2) достаточная долговечность;

3) не требует, периодического обслуживания;

4) герметичность контактов;

5) возможность применения во взрывоопасных местах.

II. Практическая часть работы.

— Ознакомиться, с конструктивными особенностями и принципом действия тиристорного пускателя.

— Ознакомиться с лабораторным стендом бесконтактного управления электродвигателем, выписать технические данные элементов схемы.

— Собрать схему бесконтактного управления электродвигателем по рис. 2 и после проверки её преподавателем опробовать установку в работе.

— Снять параметры по приборам, сравнить их с паспортными.

— Ответить на контрольные вопросы.

III. Графическая часть.

Вычертить электрическую схему управления трехфазным асинхронным двигателем с короткозамкнутым ротором с помощью тиристорного пускателя, управляемого герконовыми элементами.

В выводах о проделанной работе следует изложить свойства исследованной схемы управления, указать замеренные параметры электродвигателя, сравнить эти значения с паспортными данными электродвигателя.

Рис. 2.4. Электрическая схема управления пуском трехфазного асинхронного двигателя с короткозамкнутым ротором с помощью тиристорного пускателя с управлением на герконовых элементах.

IV. Контрольные вопросы

1. Какие виды бесконтактных управляющих устройств Вы знаете?

2. Объяснить применение тиристора в цепи постоянного тока, принцип действия тиристора.

3. Применение тиристора в цепи переменного тока, принцип действия тиристора.

4. Каковы преимущества бесконтактных управляющих устройств (тиристорного пускателя)?

5. Каковы преимущества герконовых элементов по сравнению с кнопочными выключателями?

6. Изложите последовательность работы пускателя при включении герконов КТ1, КТ2.

ЛАБОРАТОРНАЯ РАБОТА №5

ПРИНЦИПИАЛЬНЫЕ СХЕМЫ КОНТАКТОРНОГО УПРАВЛЕНИЯ ЭЛЕКТРОДВИГАТЕЛЯМИ

Цель работы: Ознакомиться с правилами начертания принципиальных схем и сборкой их при управлении асинхронным электроприводом.

I. Описательная часть.

Большинство механизмов и машин на горных и геологоразведочных работах имеют контакторное управление электроприводом. В зависимости от условий технологического процесса используются те или иные схемы управления, различающиеся по сложности и насыщенности различными элементами. Однако в основе их лежат сочетания типовых схем, объединяемых в общий комплекс управления машиной, станком или агрегатом.

Читайте так же:
Выключатели клавишные для наружной установки

К числу таких схем относятся три базовых варианта управления: с использованием однокнопочного поста управления (толчковая, схема), двухкнопочного поста (с блокировкой кнопки «Пуск») и с трехкнопочным постом (реверсивный вариант).

Нередко в общей схеме управления агрегатом используются все разновидности типовых схем, как, например, в схеме управления современной буровой установкой, где по толчковой реверсивной схеме управляется механизм труборазворота, а станок и насосы — по схеме с блокировкой кнопки «Пуск».

На рис. 1, 2, 5 приведены базовые, схемы, а на рис. 3, 4 даны промежуточные варианты, позволяющие с постепенным усложнением перейти от схемы 2 к схеме 5.

Прежде, чем приступить к сборке схем следует ознакомиться с приведенными ниже условными обозначениями отдельных элементов и правилами их начертания:

— схемы выполняются с минимальными количеством пересечений, а места соединений обозначаются точками;

— силовые цепи чертятся толще, чем прочие (цепи управления);

— элементы аппаратов размещаются на схеме с учетом последовательности их действия и удобства чтения.

II. Практическая часть и порядок работы.

1. Изучить условные обозначения отдельных элементов схем и найти их на стенде.

2. Собрать типовые варианты схем и поочерёдно после проверки преподавателем произвести включение.

III. Графическая часть.

Начертить принципиальные схемы контакторного управления.

IV. Проверочное задание

Составить схему управления двумя электродвигателями:

1) второй двигатель может быть включен только после включения первого, а отключаются оба двигателя одновременно;

2) двигатели включаются и выключаются одновременно, только второй выключается после первого;

3) первый двигатель включается индивидуально, но отключается при включении второго.

ЛАБОРАТОРНАЯ РАБОТА №6

Тиристорные контакторы постоянного тока

Контакторы постоянного тока имеют ряд индивидуальных особенностей и характеристик. Одной из них является возможность работы с гораздо более высокими частотами переключения, во время регулировок и преобразований тока и напряжения. Этим они заметно отличаются от тиристорных регуляторов, осуществляющих стабилизацию в цепях с переменным током. Устройства постоянного тока обеспечивают более высокий уровень быстродействия, и данный фактор в значительной степени определяет сферу их использования.

Тиристорные пускатели электродвигателей

Сочетание малого коэффициента мощности двигателя и большого угла задержки включения при использовании тиристорных пускателей приво-

Хотя в асинхронных двигателях коэффициент мощности при включении и имеет обычно небольшую величину, формы токов и напряжений в них при использовании тиристорных пускателей подобны приведенным на Рис. 10.8 и Рис. 10.9. При прямом включении асинхронного двигателя в сеть в начальный момент ток через него оказывается в 5—6 раз больше, чем даже при максимальной нагрузке. Этот бросок тока способен вызвать «проседание» напряжения в цепи питания двигателя, и, если к ней подключено еще какое-либо оборудование, может произойти нарушение его работы. Даже лампы накаливания на секунду-другую могут потухнуть. Тиристорные пускатели способствуют уменьшению этих неприятностей, но ценой снижения начального момента вращения двигателя. Момент вращения пропорционален квадрату тока через двигатель, так что снижение этого тока на 50% от номинального значения приведет к снижению вращающего момента в 4 раза. Однако множество механизмов, например вентиляторов и насосов, способны стартовать и при пониженном вращающем моменте. Если исключить потери на трение, они требуют увеличения вращающего момента пропорционально квадрату скорости вращения.

Рис. 10.9. Графики напряжений и тока одной фазы в схеме трехфазного ключа при угле задержки включения 120°и коэффициенте мощности 0.8

дит к большому падению напряжения питания. Более того, содержание гармоник в потребляемом из сети токе может превысить допустимые пределы. Одним решением для обеих этих проблем является использование конденсаторов для коррекции коэффициента мощности. Их подключают к одному или нескольким последовательно включенным в шины питания дросселям. При этом не только повышается коэффициент мощности, но и фильтруются гармоники потребляемого тока. Для поддержания напряжения питания в приемлемых пределах эти конденсаторы делают коммутируемыми. Если емкости конденсаторов достаточно для обеспечения нужного напряжения питания при пусковом токе, то при нормальной работе двигателя во избежание чрезмерного повышения напряжения питания эти конденсаторы должны быть отключены.

Тиристорные пускатели обычно работают при токе, минимально достаточном для получения требуемого момента вращения. Достоинство этих стартеров состоит в возможности плавного увеличения тока до требуемого значения, что исключает резкие броски тока и «проседание» напряжения в питающей сети. Незначительное плавное снижение яркости свечения ламп накаливания, включенных в цепь питания электродвигателя, намного менее заметно, чем внезапное их погасание.

На Рис. 10.10 приведены пусковые характеристики асинхронного двигателя для привода центрифуги мощностью 2500 л. с. Ток линейно увеличивается от нуля до 400% от номинального значения за время 20 с. Вал двигателя начинает вращаться при токе около 350% и затем начинает ускоряться. Кривая 4 на Рис. 10.10 отображает «чистый» момент вращения, идущий на ускорение и равный разнице между развиваемым мотором моментом вращения и моментом вращения, отбираемым нагрузкой.

На Рис. 10.11 приведены графики изменения тока и скорости при пуске этого двигателя.

Вопреки здравому смыслу при использовании уменьшенного пускового тока мотор подвергается большим температурным воздействиям, чем при прямом включении его в сеть. Интеграл frdt оказывается больше из-за увеличенного времени выхода на рабочий режим, хотя ток и меньше. Это значение необходимо сравнить с пределом, указываемым производителем. При этом следует проявлять осторожность, так как до тех пор, пока вал двигателя не начнет вращаться, существенного отвода тепла от двигателя не происходит.

Тиристорные стартеры не только исключают броски тока в питающей сети. Еще одно их достоинство состоит в исключении ударных нагрузок на вал и на связанное с ним оборудование при включении с плавно нарастающим током. Программное управление током мотора способно обеспечить практически постоянное значение момента вращения, передаваемого на нагрузку в процессе выхода мотора на рабочий режим, что является важ-

2 — Вращающий моментдвигателя

3 — Вращающий моментнагрузки

— Вращающий момент, идущий

на ускорение вращения

Рис. 10.10. Пусковые характеристики асинхронного двигателя для центробежного насоса мощностью2500л. c., конструкция С по классификации Nema, напряжепие питания 4160 В

Рис. 10.11. Графики изменения тока и скорости при пуске двигателя

ным требованием при использовании в качестве нагрузки центрифуг и другого подобного оборудования. Как вариант, программа может обеспечить и постоянное ускорение, т. e. линейную зависимость скорости вращения вала от времени при запуске.

Источник: Сукер К. Силовая электроника. Руководство разработчика. — М.: Издательский дом «Додэка-ХХI, 2008. — 252 c.: ил. (Серия «Силовая электроника»).

  • Предыдущая запись: БК2Т1400-1,1-П
  • Следующая запись: SKS1900B6U

Похожие посты:

Преимущества и недостатки

Несомненные плюсы тиристорных контакторов в сравнении с обычными устройствами заключаются в следующем:

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector