Ele-prof.ru

Электро отопление
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Экскурсия на подстанцию 220/110/20

Экскурсия на подстанцию 220/110/20

Прежде чем электричество с электростанции попадает к нам в розетку, его напряжение сначала увеличивают до сотен тысяч вольт, а потом обратно понижают до 220В. Делают такие преобразования на трансформаторных подстанциях.

Самая главная характеристика подстанции — уровни напряжения по верхней и нижней стороне. То что написано в заголовке как раз и означает что на верхней стороне 220 тысяч вольт, а на нижнем два уровня напряжения 110 и 20 кВ. То есть по сути это две подстанции на одной территории. А в нашей розетке согласно классификации энергетиков 0,4кВ, это потому. что между фазами 400 вольт (раньше было 380 но стандарты давно поменялись).

Начинается подстанция с открытого распределительного устройства с инструктажа по технике безопасности, затем идем на верхнюю сторону подстанции в открытое распределительное устройство — ОРУ.

image

На общем плане видна ЛЭП, разъединители, элегазовые выключатели, и порталы с секциями шин.
Порталы это металлические конструкции над всем видимым хозяйством, а секцией шин называют часть схемы подстанции которую можно выключателями и разъединителями от остальной схемы отключить. Данная подстанция способна питаться с любого конца линии электропередач, а также может линию разъединить. Не знаю на счет именно этой ЛЭП, но в отличии от шнура питания вашего ПК, в котором ток всегда поступает из розетки, линии электропередач высокого напряжения по больше части включены в единую энергосистему и энергия по таким линиям может перетекать от разных источников (расположенных с разных сторон линии) к разным потребителям в разное время. Для этого все генераторы включенные в единую сеть работают строго синхронно.
Коммутации линии 220 кВ выполняются элегазовыми выключателями.

image

Элегаз или гексафторид серы закачивают в выключатели для лучшего гашения дуги при разъединении контактов. Все замечали искру в выключателе дома или в розетке при выключении вилки, — вот тот же принцип, но на много порядков больше. Бывают вакуумные, масляные выключатели, но самыми надежными на сегодня для такого уровня напряжения считаются элегазовые.

На фото я показал манометр, его видно с земли, чтобы работник мог диагностировать утечку газа. Данную модель выключателя при вытекшем газе выключать под нагрузкой нельзя — он разрушится.

Также на Российских подстанциях обязательно присутствуют разъединители:

image

Это по сути тоже выключатель, но полностью открытый, отключать разъединитель можно только без нагрузки. Нужен он для создания «Видимого физического разрыва» — это обязательное условие безопасного выполнения работ на объектах подстанции. То есть мало отключить элегазовым выключателем и заземлить, нужно чтобы был виден физический разрыв.

Выключатели и разъединители могут управляться как с пульта управления подстанцией, так и в ручную с помощью специальных рукояток.

Одно из интересных для электронщика устройств: высокочастотный заградитель

image

image

По сути катушка и конденсатор составляют LC — фильтр, который не пропускает в сеть высокочастотный сигнал. А высокочастотный сигнал идет с другой подстанции или электростанции, его частота в районе 40 кГц, и используется для передачи информации, в основном системой защиты и автоматики. Скорость передачи очень низкая, но надежность способа себя доказала десятилетиями и данный тип связи обязателен при построении подобных объектов. Мощность сигнала порядка 1кВ и его очень сложно технически исказить или заглушить.
Измерить напрямую токи и напряжения в таких сетях приборами невозможно, поэтому для работы автоматики и измерений используются трансформаторы. Трансформатор тока мы видели на картинке с элегазовым включателем, а трансформаторы напряжения выглядят так:

image

После преобразования получаем максимум 100 вольт или 5 ампер — на эти значения настроены все щитовые измерительные приборы и устройства РЗА (релейной защиты и автоматики). В отличие от стандарта промышленных контроллеров: 1-10В и 4-20мА, уровни в 100В и 5А гораздо устойчивее к помехам.

Еще одно устройство по верхней стороне — защита от перенапряжения:

image

При ударе молнии сопротивление варистора резко падает и сбрасывает лишнюю энергию в землю. И да срабатывает он на 190кВ, потому как в ЛЭП 220кВ каждая фаза относительно земли имеет потенциал меньше 190кВ.

А вот и сердце подстанции — автотрансформатор 250МВА (мегавольтампер):

image

Трансформатор имеет множество устройств обеспечения его работы и защиты. При пожаре тушится водой, хотя масло водой и не тушится, но если денег на пенохозяйство нет, и очень хочется то можно и водой. Используется система распылителей при работе которой вокруг трансформатора образуется облако пара и воды, которое перекрывает доступ кислорода и пожар прекращается.

Читайте так же:
Двойной перекрестный выключатель abb

Автотрансформатором он называется потому, что имеет соединение между первичной и вторичной обмотками как в ЛАТРе — и считается, что КПД у него выше чем у классического трансформатора.
Данный трансформатор имеет две вторичные обмотки 110 и 10. Обмотка 10 кВ используется только для обеспечения собственных нужд. Как показала практика, если обмотку 10Кв нагрузить по номиналу, то образуются не предусмотренные электромагнитные поля и болты, которыми прикручено дно трансформатора начинают светиться.

Нагрузка в сети не постоянная и данный трансформатор обеспечивает еще и регулировку напряжения под нагрузку

image

Ручку можно крутить только во время ремонта и настройки, в рабочее время — только электропривод и автоматика.

На всей высокой стороне (высокой кстати называют ее по уровню напряжения, физически все в одной плоскости) постоянно слышен треск разрядов и это довольно быстро утомляет.
После автотрансформатора начинается низкая сторона с уровнем напряжения 110
Здесь все тоже самое: открытое распредустройство, выключатели, порталы, секции шин…

image

Разъединители и выключатели:

image

И электроэнергия отправляется на другие подстанции

Но есть еще и вторая низкая сторона, начинается после трансформатора 110/20

Трансформатор поменьше, система охлаждения пассивная, это уже классический трансформатор, а не автотрансформатор. Но все системы осушения масла и воздуха, защиты тоже присутствуют. На стороне 110 тишина, треска разрядов совсем нет.

Самая низкая сторона подстанции — 20кВ. представлена ЗРУ — закрытым распределительным устройством

Если на ОРУ 220 кВ ближе 4-х метров к токоведущим частям приближаться запрещено, то в ЗРУ 20кВ можно спокойно прикасаться к оборудованию

Все закрыто, промаркировано, управляется с пульта или вручную, открыть просто так ячейку невозможно — все блокируется автоматикой.

Для ремонта ячейки выкатываются на таких тележках:

Для контроля и управления используются отечественные контроллеры:

Далее напряжение 20кВ поступает в местные подстанции по подземным кабелям. Сети напряжением выше 0,4кВ изолированы от земли (ну не совсем 100% но привычного нуля в таких сетях нет). При пробое на землю ток все-таки течет, но воспринимается как обычное потребление, а дуга при этом портит изоляцию кабеля и в конечном счете приводит к его повреждению и межфазному замыканию. Чтобы это предотвратить придумали специальную систему:
На три фазы кабеля ставят трансформатор со средней точкой, и при равной нагрузке на фазы напряжение в средней точке относительно земли равно нолю, а при замыкании на землю напряжение возрастает и является индикатором проблемы. Для определения конкретного кабеля. в котором произошло замыкание используют большие резисторы.

Также существуют дугогасящие катушки, которые позволяют компенсировать разность потенциалов, погасить дугу, и по рассказам иногда изоляция затягивается и ремонта кабеля не требуется.

Главный пульт подстанции:

на шкафах нарисована схема подстанции и элементы управления вписаны в схему — перед входом строго напомнили никакие ручки не крутить и ничего не нажимать. За пультом куча шкафов с системами питания переменного и постоянного тока (вся защита работает на полностью автономной сети постоянного тока), систем сигнализации, пожаротушения и т.п. Все закрыты.
Вот так выглядит устройство высокочастотной связи, то самое, что подключено до высокочастотного заградителя и общается с себе подобными на других подстанциях.

В заключении нас пустили в зал телеметрии и РЗА: Ожидал чего-то интересного, но зал был заполнен закрытыми шкафами с непонятными аббревиатурами. Времени уже не оставалось и расспросить подробности не удалось.

Вот так выглядит один из шкафов, где что-то видно:

На фото универсальные преобразователи уровней, которые преобразуют 100В 5А в 24В 20мА
Часть РЗА собрано на механических реле, часть на логических контроллерах. Вся информация выводится на рабочее место диспетчера на экране ПК, откуда может и управляться. Также вся информация поступает на центральный диспетчерский пункт сетевой организации.

На этом наша экскурсия закончилась, сдали каски и еще раз со стороны взглянув на ОРУ, в сопровождении охраны покинули территорию.

С точки зрения меня как ИТ-шника, подходы к защите, блокировкам, управлению, контролю организованы на высшем, можно сказать «железном» уровне — вполне можно позаимствовать при построении информационных систем.

Проект РЗА

Сайт о релейной защите и цифровых технологиях в энергетике

Защиты и автоматика секционного выключателя 6(10) кВ

Защиты и автоматика секционного выключателя (СВ) 6-10 кВ

Для секционного выключателя (СВ) защиты практически аналогичны защитам ввода 6(10) кВ. При этом надо помнить, что в СВ сходятся сигналы присоединений обеих секций.

Например, если говорить про УРОВ, то на СВ заводятся сигналы УРОВ с каждого присоединения подстанции в то время, как на ввод только УРОВ присоединений своей секции. То же самое с сигналами ЛЗШ и дуговой защиты.

Читайте так же:
Выключатель для ушм bort

СВ 6(10) кВ — это своего рода узел, куда сводится множество защитных сигналов. Поэтому в терминале СВ должно быть достаточно дискретных входов.

Для сетей в односторонним питанием (а мы рассматриваем именно такие) СВ в нормальном режиме всегда отключен. Если срабатывает АВР, то он сначала отключает ввод потерявший питание, а потом включает СВ. Может быть и наоборот, но это больше характерно для быстродействующего АВР (БАВР), который сегодня набирает популярность.

Алгоритма АВР в терминале СВ как такового нет. Он просто выполняет команды АВР терминалов вводов, которые управляют СВ через дискретные входы.

Можно сказать, что РЗА секционного выключателя для стандартной схемы довольно простые и обычно не вызывают вопросов даже у начинающих специалистов.

Кстати, вопрос для начинающих: почему на СВ 6(10) кВ не используют токовую отсечку? Ведь на шинах ток КЗ максимальный и отключать его следует как можно быстрее. Ответы пишите в комментариях.

В следующий раз рассмотрим защиты и автоматику ТН 6(10) кВ

БЭМП РУ-СВ содержит все перечисленные в статье защиты

Отсечки на СВ не применяют, потому что вряд ли получится отстроить ее по току от отсечек отходящих линий, а так же выдержать коэффициент чувствительности в конце зоны защиты т.е. перед тт отходящей линии, если конечно сборные шины сделаны не из какой-нибудь стали )) ЛЗШ помогает быстро отключить повреждение на шинах. В сетях с напряжением 35 кВ иногда применяется ускоряющаяся отсечка на СВ, но, возможно, это только в старых схемах и в сетях 6 (10) кВ не применяется вовсе

Отсечку не отстраивают от других отсечек. Она отстраивается в основном от бросков тока намагничивания и максимального тока КЗ в конце зоны. А у СВ зона имеет нулевую длину (шины), поэтому токи КЗ в начале и конце зоны одинаковые. Таким образом, отсечку просто нельзя выбрать. А так в целом ответ правильный

Получается по току отстраивают только МТЗ. Хотя логично, зона защиты мтз одного присоединения перекрывает зону мтз другого и для надежности отстраивают ток срабатывания одной мтз от другой, с отсечкой это даже невозможно, спасибо )

Селективность МТЗ обеспечивается выдержкой времени. По току МТЗ смежных участков согласуются по чувствительности, чтобы вышестоящая защита не пустилась без пуска нижестоящей. Если интересна эта тема, то предлагаю посмотреть Курс по МТЗ — https://pro-rza.ru/kursy/videokurs-2-maksimalnaya-tokovaya-zashhi/

Соглашусь с Александром, ТО по своей сути будет не селективно работать по отношению к отходящим фидерам, что бы её сделать селективной, нужно либо увеличить ток срабатывания (уменьшить чувствительность) или сделать выдержку времени ( лишить быстродействия), таким образом встает вопрос «Зачем она нужна?». ЛЗШ и ДгЗ справятся с задачей быстрее и надежнее.

Интернет форумы — крайне вредная штука! Вопрос поставлен некорректно. Для начала нужно понимать в каком режиме работает сеть.
1. Например при работе подстанции от двух вводов и замкнутом секционном выключателе — возникает КЗ на одной из секций. В этом случае мы делим шины секционным выключателем без выдержки времени (чтобы уменьшить токи КЗ), и только потом разбираемся на какой из шин КЗ.
2. На сборных шинах генераторного напряжения — все то же самое!
3. Например при КЗ на присоединении, подключенному к шинам, отказал основной комплект РЗА вместе с УРОВ и поврежденный участок сети будет отключен последующей защитой. Блокировка местного АВР от последующей защиты невозможна ввиду её удаленности. При снижении напряжения на шинах запустится местный АВР секционным выключателем на КЗ. При включении СВ всегда работает ускорение чувствительной защиты СВ и МТЗ сработает за 0,15..0,2с. То есть с минимальной задержкой времени, необходимой для отстройки от бросков тока намагничивания трансформаторов и броска апериодической составляющей пусковых токов электродвигателей. А вот отсечка в этом случае должна работает без выдержки времени. Поскольку в этом случае нет ни какой разницы: КЗ у нас на шинах, или неотключаемое КЗ за выключателем на присоединении.
С уважением А.Л.Соловьёв

Александр Леонидович, добрый день.
Я рассматривал стандартную распределительную подстанцию 6-10 кВ с базовыми присоединениями — это у есть в первой статье цикла по защитам 6-10 кВ (https://pro-rza.ru/zashhity-tipovyh-prisoedinenij-6-10-kv/). Конечно режимы работы СВ могут быть разными, но мы рассматриваем основной случай, когда СВ разомкнут в нормальном режиме. Кольцевых режимов через СВ в распределительной сети крайне мало, сегодня параллельная работа трансформаторов почти никогда не предусматривается (сами сети против). Шины станций действительно лучше сразу разделять, чтобы уменьшить воздействие на генераторы, но это другая тема.

Читайте так же:
Расстояние выключателя от пола пуэ

Что же касается 3 вопроса, то у вас какая-то странная схема, когда СВ есть, а вводных выключателей нет. КЗ на линии, где отказал комплект РЗА, должно отключаться защитой ввода, а не удаленной защитой присоединения. При этом блокировка АВР пройдет в штатном режиме и СВ не включится. Если же у вас вместо выключателей на вводах стоят ВНА, то и АВР по 6(10) кВ делать нельзя, ровно по тем причинам, которые вы описали (нет возможности блокировать АВР при КЗ). В этом случае АВР можно сделать по 0,4 кВ ниже.

1. Во первых — параллельную работу трансформаторов никто не отменял. Действительно, применяется не часто, но применяется при режимах с большой разницей в нагрузках трансформаторов.
2. Хорошо, что про шины генераторного напряжения Вы согласны.
3. Приезжали ко мне слушатели, у которых в схемах: СВ есть, АВР есть, УРОВ есть, на вводах ВНА, а выключатель вводной линии находится за 300 метров.

Поэтому я и начал с того, что: «Для начала нужно понимать в каком режиме работает сеть» потому что универсальных решений в релейной защите на все случаи жизни быть не может.
Поэтому на СВ и применяют терминалы у которых 3…4 группы разных уставок для всех предполагаемых режимов работы сети.

Схемы и случаи бывают разные, это правда. Просто не вижу смысла рассказывать об этом начинающим релейщикам (о чем и написал в первой статье). Им сначала нужно дать общий фундамент, а уж потом смотреть исключения. Если сказать, что есть условные 25 режимов работы СВ и сразу всех их описывать (при том, что первый режим — это 95% всех решений в энергетике), то у читателя будет каша в голове. Но это мой подход и он, конечно, может быть не оптимальным.
Моя аудитория, в основном, именно начинающие специалисты. Для них я и пишу статьи и видео. А опытные спецы и без меня знают, как работает СВ)

В том то всё и дело, что информация для «начинающих». В результате упрощения в вышеприведенных материалах не видна разница между защитами вводного выключателя и секционного. А делительные защиты — тема вообще закрытая для данного форума. С уважением А.Л.Соловьёв.

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.

Трансформаторные подстанции высочайшего качества


В конце XX века инновационная конструкции выключателей ВВ /TEL . произвели переворот в мире коммутационной аппаратуры 6-10кВ и позволили совершить прорыв на пути создания современных КРУ высокой надежности, не требующие обслуживания выключателя на протяжении всего срока службы. Запатентованная конструкция, легкость и не прихотливость конструкции ВВ /TEL . позволяет встроить выключатель в любую, существующую, ячейку КРУ или КСО. либо создать новую с уникальными потребительскими качествами. Сегодня ВВ /TEL . применяется на 5-ти континентах мира, чем подтверждает удовлетворение самым жестким требованиям эксплуатации будь, это условия Кольского полуострова с зимним морским климатом, либо широта Египта, с изнуряющим зноем зимой и особенно летом, или влажный климат Вьетнама. Такая популярность основывается на существующем разнообразии решений, которые уже имеются или позволяет предложить выключатель ВВ /TEL по модернизации распределительных устройств, повышению их надежности и всей энергосистемы в целом.

Вакуумные выключатели (ВВ) предназначены для коммутации электрических цепей при нормальных и аварийных режимах в сетях трехфазного переменного тока (частота 50 Гц), номинальным напряжением до 10 кВ с изолированной, компенсированной, заземлённой через резистор или дугогасительный реактор нейтралью. ВВ предназначены для установки в новых и реконструируемых комплектных распределительных устройствах станций, подстанций и других устройств, осуществляющих распределение и потребление электрической энергии во всех отраслях народного хозяйства, в том числе нефтегазодобывающей и перерабатывающей, нефтехимической, химической, горнорудной и др. отраслях.

Структура условного обозначения выключателей

  • BB/TEL-10-20/1000
  • BB/TEL-10-20/1600
  • BB/TEL-10-31,5/1000
  • BB/TEL-10-31,5/1600
  • BB/TEL-10-31,5/2000
  • BB/TEL-10-31,5/2000 Q

Устройство и работа выключателей

Принцип дугогашения.
Гашение дуги переменного тока осуществляется в вакуумной дугогасительной камере (ВДК) при разведении контактов в глубоком вакууме (остаточное давление порядка мм рт. ст.). Носителями заряда при горении дуги являются пары металла. Из-за практического отсутствия среды в межконтактном промежутке, конденсация паров металла в момент перехода тока через естественный ноль осуществляется за чрезвычайно малое время ( с ), после чего происходит быстрое восстановление электрической прочности ВДК. Электрическая прочность вакуума составляет порядка 30 кВ/мм, что гарантирует отключение тока при расхождении контактов более 1 мм.
В выключателях применяется современная конструкция ВДК с аксиальным магнитным полем. Дуга в таком поле находится все время в диффузионном состоянии, что существенно уменьшает износ, который не превышает 1 мм после исчерпания коммутационного ресурса.
Конструкция выключателей.
Выключатели состоят из трех полюсов, установленных на металлическом корпусе, в котором размещаются электромагнитные приводы каждого полюса с магнитной защелкой, удерживающей выключатель неограниченно долго во включенном положении после прерывания тока в катушке электромагнита привода.
Основные узлы выключателей на ток до 1000 А размещаются в закрытом изоляционном корпусе круглого сечения, выполненном из механически прочного и дугостойкого материала, защищающего элементы полюса от механических повреждений и воздействий электрической дуги тока КЗ.

Читайте так же:
Прокладка проводов под выключатель

Крепление выключателей к металлическим элементам КРУ и КСО осуществляется посредством болтов М10, резьбовые отверстия для которых имеются на боковых сторонах металлического корпуса. Выключатели могут работать в любом пространственном положении. Выключатели на номинальный ток 1600 А конструктивно отличаются от выключателей на 630-1000 А устройством изоляционных корпусов, способом установки в них ВДК и способом крепления выключателей.
Изоляционные корпусы прямоугольного сечения открыты снизу и сверху для вентиляции воздуха и охлаждения токоведущих частей. С передней и задней сторон к корпусам крепятся изоляционные листы толщиной 10 мм для придания им необходимой жесткости. На противоположной стороне токоведущих выводов круглого сечения в полимерной части выключателя имеются закладные металлические втулки ( 6 шт.) с отверстиями под болт М16, с помощью которых выключатели устанавливаются на вертикальное металлическое основание приводом вниз или вверх.
Устройство полюса.
Разрез полюса выключателя представлен на рисунке. В состав полюса входят следующие основные элементы: ВДК 2 с неподвижным 1 и подвижным 3 контактами и сильфоном, гибкий токосъем, тяговый изолятор 5, токоведущие выводы и электромагнитный привод. Привод состоит из кольцевого электромагнита 13, якоря 12, катушки 11, пружин отключения 9 и дополнительного поджатия 10, тяги 15 устройства ручного отключения. Катушки электромагнита включены в цепь управления параллельно и используются для включения и отключения выключателя.
Полюса механически связаны между собой промежуточным валом 8, на котором установлен кулачок для управления вспомогательными кон-тактами, используемыми во внешних цепях (управления, сигнализации и др.). Выключатели, предназначенные для частых коммутационных операций, содержат в своей конструкции усиленный привод и камеру ВДК, которые не влияют на габаритные и присоединительные размеры.
Работа выключателя.
Включение.
В отключенном положении подвижные части полюса удерживаются силой отключающей пружины 9 независимо от пространственно положения выключателя. Включение и отключение выключателя производится от блока управления (БУ), который является неотъемлемой частью ВВ.
При подаче команды включения БУ пода( напряжение на катушку 11 электромагнит Протекающий при этом ток создаёт магнитный поток в зазоре между якорем 12 и кольцевым магнитом 13, под действием которого якорь втягивается внутрь электромагнита и через тяговый изолятор 5, сжимая пружину отключения 9 и воздействуя на подвижный контакт ; замыкает контакты ВДК.
Скорость замыкания контактов составляв около 1 м/с. Она является оптимальной для процесса включения и предупреждения дребезг контактов при включении.
Замыкание подвижного контакта с неподвижным происходит в момент, когда между якорем верхней крышкой электромагнита остается зазор 2 мм. Проходя это расстояние, якорь сжимает пружину поджатия 10 и создает необходимо контактное нажатие. После замыкания магнитно системы якорь встает на магнитную защелку удерживается в этом положении неограниченно долго за счет остаточной индукции кольцевого электромагнита 13. Общий ход якоря 8 мм, ход подвижного контакта 6 мм.
Запас по усилию удержания (сила, необходима для отрыва якоря от верхней крышки электромагнита, приложенная вдоль оси привода), составляет 450-500 Н для одного полюса выключателя.
В случае обрыва цепи катушки электромагнита одного из полюсов выключатель не фиксируется во включенном положении и отключается, тем самым предупреждается работа выключателя в неполнофазном режиме.
В процессе включения ВВ якорь через кинематическую связь поворачивает вал 8 и установленный на нем кулачок, который управляет контактами вспомогательных цепей (микро-переключателями).
Длительность подачи напряжения на катушку электромагнита устанавливается блоком управления и составляет 60 — 80 мс в зависимости от типа БУ. Она выбрана с запасом, поэтому момент размыкания геркона или микропереключателя в цепи управления включением не влияет на включающую способность привода и не требует наладки и проверки эксплуатационным персоналом.
Источником электрической энергии для включения ВВ служат предварительно заряженные малогабаритные конденсаторы, устанавливаемые в БУ (BU) или в блоке питания БП (BP).
Отключение.
При подаче команды отключения БУ подает на катушку электромагнита напряжение противоположной полярности и определенной длительности. При этом электромагнит частично размагничивается и якорь 12 снимается с магнитной защелки. Под действием пружины отключения и пружины дополнительного поджатия якорь разгоняется и наносит удар по тяговому изолятору, соединенному с подвижным контактом 3 вакуумной камеры. Ударное усилие, создаваемое якорем электромагнита, превышает 2000 Н, что позволяет отключать выключатель даже при наличии точечной сварки контактов, которая может иметь место при включении ВВ.
После удара подвижный контакт приобретает высокую стартовую скорость, необходимую для успешного отключения тока КЗ, и под действием отключающей пружины совместно с другими подвижными частями занимает конечное отключенное положение.
Ручное отключение.
Ручное отключение осуществляется путем воздействия на кнопку ручного отключения, которая через толкатель 15, шарнирно связанный с валом 8, воздействует через вал привода на якоря электромагнитов и разрывает магнитную систему. Кнопка ручного отключения, связанная с валом 8, может служить указателем положения выключателя.
Усилие на кнопке отключения при ударном воздействии составляет 200 — 250 Н.
Автономное включение.
Наличие в схеме управления выключателями батареи малогабаритных конденсаторов позволяет осуществлять автономное включение ВВ на обесточенной подстанции с помощью двух стандартных элементов питания 9 В, подключая их низковольтному входу БУ. Имеющийся в БУ или блоке питания преобразователь повышает напряжение питания до необходимого и заряжает в течение короткого времени (менее 1 мин) батарею конденсаторов, после чего выключатель готов к выполнению операции «В» или «ВО».
Автономное включение может также выполняться с помощью инвентарных переносных блоков автономного включения (БАВ), поставляемых предприятием по заказу.

Читайте так же:
Как установить двойной выключатель шнайдер

Устройства управления вакуумными выключателями являются их неотъемлемой частью и изготавливаются в виде отдельных блоков, устанавливаемых в релейных отсеках КРУ, на панелях камер КСО или на выкатных элемента КРУ. Они обеспечивают включение и отключение ВВ от источника постоянного, выпрямленного или переменного оперативного тока, блокировку от повторного включения ВВ, отключение от трансформаторов тока при отсутствии напряжения питания, а также ряд дополнительных функций.

Вакуумный выключатель ВВ-ENRG-10

Вакуумный выключатель ВВ-ENRG-10 предназначен для проведения тока в номинальном режиме, защиты персонала и оборудования от токов перегрузки и короткого замыкания в электрических цепях с номинальным током до 1 000 А и классом напряжения 10 кВ.

Фотогалерея

Область применения

Эксплуатация в сетях трехфазного переменного тока с номинальным напряжением 10 кВ с изолированной или заземленной через дугогасящий реактор или резистор нейтралью.

Условия эксплуатации

Работа при следующих условиях окружающей среды:

  • высота установки над уровнем моря – не более 1 000 м
  • рабочий диапазон температур окружающего воздуха от –55 до +44 °С
  • относительная влажность воздуха – 100% при температуре +25 °С
  • тип атмосферы – II по ГОСТ 15150.69

Краткое описание конструкции

Вакуумный выключатель ВВ-ENRG-10 представляет собой металлический корпус, на котором закреплены три полюса. Корпус изготовлен из конструкционной листовой стали и покрыт порошковой краской. Внутри корпуса размещены три электромагнитных привода с магнитной защелкой, цепи подключения к которым выведены на внешние клеммы закрытые кожухом. Основной элемент каждого полюса – вакуумная дугогасительная камера, установленная внутри полюса, изготовленного из полимерного материала.

Вакуумная дугогасительная камера (ВДК) имеет покрытие из силикона, для обеспечения дополнительной защиты от поверхностного пробоя в условиях повышенной влажности и запылённости. Особая геометрия контактов ВДК создает максиальное магнитное поле во всей области нахождения ствола дуги. Благодаря этому эффекту дуга сжатого типа принимает вид диффузной дуги, равномерно распределенной по поверхности контакта при любой величине отключаемого тока. Таким образом снижается тепловая нагрузка на контакты, что уменьшает их точечный перегрев и последующую эрозию.

Конструкция корпуса полюса составная, выполнена из высокопрочного полимерного материала, обеспечивающего высокие диэлектрические характеристики и прочность полюса. Внутри полюса установлена ВДК. Верхний контактный вывод полюса соединен с неподвижным контактом ВДК. Нижний контактный вывод полюса соединен через гибкую токоведущую шину с подвижным контактом ВДК. Подвижный контакт ВДК через изоляционную тягу механически связан с электромагнитным приводом и общим валом синхронизации.

Привод выключателя электромагнитный с магнитной защелкой. Движение подвижных частей привода производит перемещение связанных с ними через изоляционные тяги подвижных контактов ВДК, обеспечивая требуемые характеристики скорости и хода.

Специальное конструктивное решение позволяет устанавливать ВВ-ENRG-10 в любом пространственном положении, что дает широкие возможности для применения выключателей при реализации программ ретрофита.
Благодаря компактным габаритным размерам и малому весу, установка выключателей серии ВВ-ENRG-10 возможна во все типы камер сборных одностороннего обслуживания
(КСО) и комплектных распределительных устройств (КРУ).

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector