Ele-prof.ru

Электро отопление
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

От чего зависит длительно допустимый ток кабеля

От чего зависит длительно допустимый ток кабеля

От чего зависит длительно допустимый ток кабеля? Для ответа на этот вопрос нам придется рассмотреть переходные тепловые процессы, происходящие в условиях когда про проводнику течет электрический ток. Нагрев и охлаждение проводника, его температура, связь с сопротивлением и сечением, — все это станет предметом данной статьи.

Переходный процесс

Для начала рассмотрим обычный цилиндрический проводник длиной L, диаметром d, площадью поперечного сечения F, сопротивлением R, объемом V, равным, очевидно, F*L, по которому течет ток I, удельная теплоемкость металла, из которого изготовлен проводник — C, масса проводника равна

где Ω — плотность металла проводника, S = пи*d*L – площадь боковой стенки, через которую происходит охлаждение, Тпр — текущая температура проводника, Т0 — температура окружающей среды, и, соответственно, T = Тпр — Т0 — изменение температуры. Ктп — коэффициент теплопередачи, численно характеризующий количество теплоты, передаваемое с единицы поверхности проводника за 1 секунду при разности температур в 1 градус.

На рисунке показаны графики изменения тока и температуры в проводнике с течением времени. С момента времени t1 до момента времени t3, по проводнику протекал ток I.

Здесь можно видеть, как после включения тока температура проводника постепенно повышается, и в момент времени t2 она перестает нарастать, стабилизируется. Но после отключения тока в момент времени t3, температура начинает постепенно спадать, и в момент времени t4 она снова становится равна исходному значению (T0).

Так, можно записать для процесса нагрева проводника уравнение теплового баланса, дифференциальное уравнение, где будет отражено, что тепло, выделившееся на проводнике, частично поглощается самим проводником, а частично — отдается окружающей среде. Вот это уравнение:

В левой части уравнения (1) — количество теплоты, выделившееся в проводнике за время dt, прохождения по нему тока I.

Первое слагаемое в правой части уравнения (2) — количество теплоты, поглощенное материалом проводника, от которого температура проводника увеличилась на dT градусов.

Второе слагаемое правой части уравнения (3) — количество теплоты, которое было передано от проводника окружающей среде за время dt, и оно связано с площадью поверхности проводника S и с разницей температур Т через коэффициент теплопроводности Ктп.

Сначала, при включении тока, все выделяющееся в проводнике тепло идет на нагрев непосредственно проводника, что и приводит к росту его температуры, и это связано с теплоемкостью С материала проводника.

С ростом температуры разность температур Т между самим проводником и окружающей средой соответственно увеличивается, и выделяющееся тепло частично идет уже и на повышение температуры окружающей среды.

Когда температура проводника достигает установившегося стабильного значения Туст, в этот момент все выделяющееся с поверхности проводника тепло передается окружающей среде, поэтому температура проводника больше не растет.

Решением дифференциального уравнения теплового баланса будет:

На практике сей переходный процесс длится не более трех постоянных времени (3*τ), и через это время температура достигает 0,95*Туст. Когда переходный процесс нагрева прекращается, уравнение теплового баланса упрощается, и установившуюся температуру можно легко выразить:

Длительно допустимый ток

Теперь можно подойти к тому, какого именно значения ток представляется длительно допустимым током для проводника или кабеля. Очевидно, для каждого проводника или кабеля есть определенная нормальная длительная температура, согласно его документации. Это такая температура, при которой кабель или провод может без вреда для себя и для окружающих находиться непрерывно и долго.

Из приведенного выше уравнения становится ясно, что такой температуре ставится в соответствие конкретное значение тока. Этот ток и называется длительно допустимым током кабеля. Это такой ток, который при прохождении по проводнику в течение длительного времени (более трех постоянных времени) нагревает его до допустимой, то есть нормальной температуры Тдд.

Здесь: Iдд — длительно допустимый ток проводника; Тдд — допустимая температура проводника.

Для решения практических задач удобнее всего длительно допустимый ток определять по специальным таблицам из ПУЭ.

Вид проводникаДлительно допустимая температураКратковременно допустимая температура
Голый проводник или шина70 о СМедь — 300 о С
Голый проводник или шина70 о САлюминий — 200 о С
Кабель в бумажной изоляции до 3 кВ80 о С200 о С
Кабель в бумажной изоляции до 6 кВ65 о С200 о С
Кабель в бумажной изоляции до 10 кВ60 о С200 о С
Кабель в бумажной изоляции до 35 кВ50 о С125 о С
Кабель в резиновой изоляции до 1 кВ65 о С150 о С
Кабель в ПВХ изоляции до 1 кВ65 о С150 о С
Кабель в изоляции из сшитого полиэтилена до 1 кВ90 о С250 о С

В случае короткого замыкания через проводник течет значительный ток короткого замыкания, который может существенно нагреть проводник, превысив его нормальную температуру. По этой причине для проводников характерно минимальное сечение исходя из условия кратковременного нагрева проводника током короткого замыкания:

Здесь: Iк — ток короткого замыкания в амперах; tп — приведенное время действия тока короткого замыкания в секундах; С — коэффициент, который зависит от материала и конструкции проводника, и от кратковременно допустимой температуры.

Электрический кабель в магазине

Связь с сечением

Теперь посмотрим, как зависит длительно допустимый ток от сечения проводника. Выразив площадь боковой стенки через диаметр проводника (формулы в начале статьи), приняв, что сопротивление связано с площадью сечения и удельным сопротивлением материала проводника, и подставив всем известную формулу для сопротивления в формулу для Iдд, приводимую выше, получим для длительно допустимого тока Iдд формулу:

Легко видеть, что связь длительно допустимого тока проводника Iдд с сечением F отнюдь не прямо пропорциональная, здесь площадь сечения возведена в степень ¾, а это значит, что длительно допустимый ток возрастает медленнее, чем сечение проводника. Остальные константы, такие как удельное сопротивление, коэффициент теплопередачи, допустимая температура — для каждого проводника индивидуальны по определению.

На самом деле, так и есть, зависимость не может быть прямой, ведь чем сечение проводника оказывается больше, тем более ухудшаются условия охлаждения внутренних слоев проводника, потому и допустимая температура достигается при меньшей плотности тока.

Если во избежание перегрева использовать проводники увеличенного сечения, это приведет к перерасходу материала. Гораздо выгоднее применять несколько проводников небольшого сечения, уложенных параллельно, то есть использовать многожильные проводники или кабели. А связь длительно допустимого тока и площади сечения в целом получается вот такой:

F124
I дд11,682,83

Ток и температура

Для расчета температуры проводника при известном токе и заданных внешних условиях, рассматривают установившийся режим, когда температура проводника достигла значения Туст, и больше не растет. Исходные данные — ток I, коэффициент теплопередачи Ктп, сопротивление R, площадь боковой стенки S, температура окружающей среды Т0:

Аналогичный расчет для длительно допустимого тока:

Здесь за Т0 принимают расчетную температуру окружающей среды, например +15°C для прокладки под водой и в земле, или +25°C для прокладки на открытом воздухе. Результаты таких расчетов приводятся в таблицах длительно допустимых токов, и для воздуха принимают температуру в +25°C, поскольку это средняя температура наиболее жаркого месяца.

Разделив первое уравнение на второе, и выразив температуру проводника, можно получить формулу для нахождения температуры проводника при токе, отличном от длительно допустимого, и при заданной температуре окружающей среды, если длительно допустимый ток и длительно допустимая температура известны, и не нужно прибегать к использованию других констант:

Из данной формулы видно, что превышение температуры оказывается пропорционально квадрату тока, и если ток возрастет в 2 раза, то превышение температуры возрастет в 4 раза.

Электрический кабель в электрощите

Если внешние условия отличаются от расчетных

В зависимости от реальных внешних условий, которые могут отличаться от расчетных в зависимости от способа прокладки, например несколько параллельно расположенных проводников (кабель) или прокладка в земле при другой температуре, требуется корректировка предельно допустимого тока.

Тогда вводят поправочный коэффициент Кт, на который домножают длительно допустимый ток при известных (табличных) условиях. Если внешняя температура ниже расчетной, то коэффициент больше единицы, если выше расчетной, то, соответственно, и Кт меньше единицы.

При прокладке нескольких параллельных проводников очень близко друг к другу, они станут друг друга дополнительно подогревать, но только при условии неподвижной внешней среды вокруг. Реальные условия зачастую располагают к тому, что окружающая среда подвижна (воздух, вода), и конвекция приводит к охлаждению проводников.

Если же среда почти неподвижна, например при прокладке в трубе под землей или в коробе, то взаимный подогрев вызовет снижение длительно допустимого тока, и тут нужно снова ввести поправочный коэффициент Кn, который приводится в документации к кабелям и проводам.

Расчет сечения кабелей и проводов по мощности и току

Калькулятор позволяет рассчитать сечение токоведущих жил электрических проводов и кабелей по электрической мощности.

Вид электрического тока

Вид тока зависит от системы электроснабжения и подключаемого оборудования.

Выберите вид тока :

Материал проводников кабеля

Материал проводников определяет технико-экономические показатели кабельной линии.

Выберите материал проводников:

Суммарная мощность подключаемой нагрузки

Мощность нагрузки для кабеля определяется как сумма потребляемых мощностей всех электроприборов, подключаемых к этому кабелю.

Введите мощность нагрузки: кВт

Номинальное напряжение

Введите напряжение: В

Только для переменного тока

Коэффициент мощности cosφ определяет отношение активной энергии к полной. Для мощных потребителей значение указано в паспорте устройства. Для бытовых потребителей cosφ принимают равным 1.

Коэффициент мощности cosφ:

Способ прокладки кабеля

Способ прокладки определяет условия теплоотвода и влияет на максимальную допустимую нагрузку на кабель.

Выберите способ прокладки:

Количество нагруженных проводов в пучке

Для постоянного тока нагруженными считаются все провода, для переменного однофазного — фазный и нулевой, для переменного трехфазного — только фазные.

Выберите количество проводов:

Кабель с рассчитанным сечением не будет перегреваться при заданной нагрузке. Для окончательного выбора сечения кабеля необходимо проверить падение напряжения на токонесущих жилах кабельной линии.

Длина кабеля

Введите длину кабеля: м

Допустимое падение напряжения на нагрузке

Введите допустимое падение: %

Рассчитанное значение сечения кабеля является ориентировочным и не может использоваться в проектах систем электроснабжения без профессиональной оценки и обоснования в соответствии с нормативными документами!

Таблица сечения кабеля по мощности и току

Сечение

Токопроводящие жилы

мм.кв.

1,5

2,5

4

6

10

16

25

35

50

70

95

120

Сечение

токопроводящие жилы

мм.кв.

ток, А

Мощность, кВт

Ток, А

Мощность, кВт

2,5

4

6

10

16

25

35

50

70

95

120

Для чего нужен расчет сечения?

Электрические кабели и провода – основа энергетической системы, если они подобраны неправильно, это сулит множество неприятностей. Делая ремонт в доме или квартире, а особенно при возведении новой конструкции, уделите должное внимание схеме проводки и выбору корректного сечения кабеля для питания мощности, которая в процессе эксплуатации может возрастать.

Специалисты нашей компании при монтаже стабилизаторов напряжения и систем резервного электропитания сталкиваются с халатным отношением электриков и строителей к организации проводки в частных домах, в квартирах и на промышленных объектах. Плохая проводка может быть не только в тех помещениях, где длительное время не было капитального ремонта, а также когда дом проектировался одним владельцем под однофазную сеть, а новый владелец решил «завести» трехфазную сеть, но уже не имел возможности подключить нагрузку равномерно к каждой из фаз. Нередко провод сомнительного качества и недостаточного сечения встречается в тех случаях, когда строительный подрядчик решил сэкономить на стоимости провода, а также возможны любые другие ситуации, когда рекомендуется делать энергоаудит.

Современный набор бытовых приборов требует индивидуального подхода для расчета сечения кабеля, поэтому нашими инженерами был разработан этот онлайн калькулятор по расчету сечения кабеля по мощности и току. Проектируя свой дом или выбирая стабилизатор напряжения, вы всегда можете проверить, какое сечение кабеля требуется для этой задачи. Все что от вас требуется, это внести корректные значения соответствующие вашей ситуации.

Обращаем ваше внимание, что недостаточное сечение кабеля ведет к перегреванию провода, тем самым существенно повышая возможность возникновения короткого замыкания в электрической сети, выходу из строя подключенного оборудования и возникновению пожара. Качество силовых кабелей и корректность выбора их сечения гарантирует долгие годы службы и безопасность эксплуатации.

Расчет сечения кабеля для постоянного тока

Данный калькулятор хорош также тем, что позволяет корректно рассчитать сечение кабеля для сетей постоянного тока. Это особенно актуально для систем резервного питания на основе мощных инверторов, где применяются аккумуляторы большой емкости, а разрядный постоянный ток может достигать 150 Ампер и более. В таких ситуациях учитывать сечение провода для постоянного тока крайне важно, поскольку при заряде аккумуляторов важна высокая точность напряжения, а при недостаточном сечении кабеля могут возникать ощутимые потери и, соответственно, аккумулятор будет получать недостаточный уровень напряжения заряда постоянного тока. Подобная ситуация может послужить ощутимым фактором сокращения срока службы батареи.

Расчёт сечения кабеля по мощности и току: как правильно рассчитать проводку

Вы планируете заняться модернизацией электросети или дополнительно протянуть силовую линию на кухню для подключения новой электроплиты? Здесь пригодятся минимальные знания о сечении проводника и влиянии этого параметра на мощность и силу тока.

Согласитесь, что неправильный расчёт сечения кабеля приводит к перегреву и короткому замыканию или к неоправданным расходам.

Очень важно провести вычисления на стадии проектирования, так как выход из строя скрытой проводки и последующая замена сопряжена со значительными издержками. Мы поможем вам разобраться с тонкостями проведения расчетов, чтобы избежать проблем при дальнейшей эксплуатации электросетей.

Чтобы не нагружать вас сложными расчетами, мы подобрали понятные формулы и варианты вычислений, привели информацию в доступном виде, снабдив формулы пояснениями. Также в статью добавили тематические фото и видеоматериалы, позволяющие наглядно понять суть рассматриваемого вопроса.

Расчет сечения по мощности потребителей

Основное назначение проводников – доставка электрической энергии к потребителям в необходимом количестве. Поскольку в обычных условиях эксплуатации сверхпроводники не доступны, приходится принимать в расчет сопротивление материала проводника.

Расчет необходимого сечения проводников и кабелей в зависимости от общей мощности потребителей основан на продолжительном опыте эксплуатации.

Общий ход вычислений начнем с того, что сначала проводим расчеты, используя формулу:

P = (P1+P2+..PN)*K*J,

  • P – мощность всех потребителей, подключенных к рассчитываемой ветке в Ваттах.
  • P1, P2, PN – мощность первого потребителя, второго, n-го соответственно, в Ваттах.

Получив результат по окончанию вычислений по вышеприведенной формуле, настал черед обратиться к табличным данным.

Теперь предстоит выбор необходимого сечения по таблице 1.

Таблица мощности

Этап #1 — расчет реактивной и активной мощности

Мощности потребителей указаны в документах на оборудование. Обычно в паспортах оборудования указана активная мощность вместе с реактивной мощностью.

Устройства с активным видом нагрузки превращают всю полученную электрическую энергию, с учетом КПД, в полезную работу: механическую, тепловую или в другой ее вид.

К устройствам с активной нагрузкой относятся лампы накаливания, обогреватели, электроплиты.

Для таких устройств расчет мощности по току и напряжению имеет вид:

P = U * I,

  • P – мощность в Вт;
  • U – напряжение в В;
  • I – сила тока в А.

Устройства с реактивным видом нагрузки способны накапливать энергию поступающую от источника, а затем возвращать. Происходит такой обмен за счет смещения синусоиды силы тока и синусоиды напряжения.

График нулевого смещения фаз

К устройствам с реактивной мощностью относятся электродвигатели, электронные приборы всех масштабов и назначений, трансформаторы.

График смещения фаз тока и напряжения

Электрические сети построены таким образом, что могут производить передачу электрической энергии в одну сторону от источника к нагрузке.

Поэтому возвращенная энергия потребителя с реактивной нагрузкой является паразитной и тратится на нагрев проводников и других компонентов.

Реактивная мощность имеет зависимость от угла смещения фаз между синусоидами напряжения и тока. Угол смещения фаз выражают через cosφ.

Для нахождения полной мощности применяют формулу:

P = Q / cosφ,

Где Q – реактивная мощность в ВАрах.

Обычно в паспортных данных на устройство указана реактивная мощность и cosφ.

Пример: в паспорте на перфоратор указана реактивная мощность 1200 ВАр и cosφ = 0,7. Следовательно, общая потребляемая мощность будет равна:

P = 1200/0,7 = 1714 Вт

Если cosφ найти не удалось, для подавляющего большинства электроприборов бытового назначения cosφ можно принять равным 0,7.

Этап #2 — поиск коэффициентов одновременности и запаса

K – безразмерный коэффициент одновременности, показывает сколько потребителей одновременно может быть включено в сеть. Редко случается, чтобы все устройства одновременно потребляли электроэнергию.

Маловероятна одновременная работа телевизора и музыкального центра. Из устоявшейся практики K можно принять равным 0,8. Если Вы планируете использовать все потребители одновременно, K следует принять равным 1.

J – безразмерный коэффициент запаса. Характеризует создание запаса по мощности для будущих потребителей.

Прогресс не стоит на месте, с каждым годом изобретаются все новые удивительные и полезные электрические приборы. Ожидается, что к 2050 году рост потребления электроэнергии составит 84%. Обычно J принимается равным от 1,5 до 2,0.

Этап #3 — выполнение расчета геометрическим методом

Во всех электротехнических расчетах принимается площадь поперечного сечения проводника – сечение жилы. Измеряется в мм 2 .

Часто бывает необходимо узнать, как грамотно рассчитать сечение провода по диаметру проволоки проводника.

В этом случае есть простая геометрическая формула для монолитного провода круглого сечения:

S = π*R 2 = π*D 2 /4, или наоборот

D = √(4*S / π)

Для проводников прямоугольного сечения:

S = h * m,

  • S – площадь жилы в мм 2 ;
  • R – радиус жилы в мм;
  • D – диаметр жилы в мм;
  • h, m – ширина и высота соответственно в мм;
  • π — число пи, равное 3,14.

Если Вы приобретаете многожильный провод, у которого один проводник состоит из множества свитых проволочек круглого сечения, то расчет ведут по формуле:

S = N*D 2 /1,27,

Где N – число проволочек в жиле.

Провода, имеющие свитые из нескольких проволочек жилы , в общем случае имеют лучшую проводимость, чем монолитные. Это обусловлено особенностями протекания тока по проводнику круглого сечения.

Электрический ток представляет собой движение одноименных зарядов по проводнику. Одноименные заряды отталкиваются, поэтому плотность распределения зарядов смещена к поверхности проводника.

Другим достоинством многожильных проводов является их гибкость и механическая стойкость. Монолитные провода дешевле и применяют их в основном для стационарного монтажа.

Этап #4 —рассчитываем сечение по мощности на практике

Задача: общая мощность потребителей на кухне составляет 5000 Вт (имеется ввиду, что мощность всех реактивных потребителей пересчитана). Все потребители подключаются к однофазной сети 220 В и имеют запитку от одной ветки.

Таблица потребителей

Решение:

Коэффициент одновременности K примем равным 0,8. Кухня место постоянных инноваций, мало ли что, коэффициент запаса J=2,0. Общая расчетная мощность составит:

P = 5000*0,8*2 = 8000 Вт = 8 кВт

Используя значение расчетной мощности, ищем ближайшее значение в таблице 1.

Ближайшим подходящим значением сечения жилы для однофазной сети является медный проводник с сечением 4 мм 2 . Аналогичный размер провода с алюминиевой жилой 6 мм 2 .

Для одножильной проводки минимальный диаметр составит 2,3 мм и 2,8 мм соответственно. В случае применения многожильного варианта сечение отдельных жил суммируется.

Расчёт сечения кабеля провода по мощности току 220 — 380 вольт формула таблица

Фото подключение светодиодного оборудования

Допустимый длительный ток для кабелей с медными жилами в воздухе

Сечение mm2

Так как значения силы тока и напряжения постоянны и равны мгновенным значениям в любой момент времени, то мощность в однофазной сети можно вычислить по формуле: P = I * U.

Например рассчитать мощность: ток I — 16 Амп умножаем на напряжение U — 220 Вольт и получаем мощность P — 3.520 ватт или 3.52 кВт.

Например рассчитать силу тока по формуле I = P / U: Мощность P — 8800 Ватт или 8.8 кВт делим на напряжение U — 220 Вольт и получаем силу тока I — 40 Амп.

Значит в квартире в однофазной сети с напряжением 220 Вольт и сечением кабеля 6 mm2, на 40 Амперный автомат можно подключить электрооборудования не более 8.8 кВт.

Mощность в трехфазной сети можно вычислить по формуле: P = 1.732 * U * I

Например рассчитать мощность: Корень из 3 или 1.732 умножаем на напряжение U — 380 Вольт и умножаем на ток I — 25 Амп получаем мощность P — 16.45 кВт или 16450 ватт.

Например рассчитать силу тока в трёхфазной сети по формуле I = P / (1.732 * U): Мощность p — 16 кВт или 16000 ват делим на значение в скобках (Корень из 3 или 1.732 умножить на U — 380 Вольт)

Ток I = Мощность P — 16000 делим на U — 658.1793 и получаем силу тока I — 24.3 Амп.

Схема подключения бесперебойного питания

Схема подключения бесперебойного питания

1. Эл. щит в магазине

Иэмерение нагрузки В электрщите 1

Иэмерение нагрузки В электрщите 2

Иэмерение нагрузки В электрщите 3

Иэмерение нагрузки В электрщите

В результате проверки было выявлено следующее (небольшой перекос по фазам A B C).

На фотографии выше, показано стрелками, подключение кабеля Головной станции к автомату 32 амп., и произведены замеры тока по фазам, которые составляют — фаза А — 17.3 амп., фаза В — 9.1 амп., фаза С — 19.4 амп. (Показания Соответствуют Рабочим Параметрам)

На фотографии ниже , стрелками показано подключение к автомату 50 амп. в ВРУ дома (вводное распределительное устройство дома), и сделаны замеры тока полной нагрузки по фазам. Они составляют фаза А -17 амп. фаза В — 11 амп. фаза С -26 амп. (Показания Соответствуют Рабочим Параметрам )

Данные показания соответствуют рабочим параметрам и не считаются аварийными. Сечение кабеля в эл. щите соответствует заявленным параметрам нагрузки.

На фотографии выше также указана аварийная фаза с обгоревшей изоляцией. Это могло произойти от послабления в местах соединения, плохого контакта, замыкания, повышенной нагрузки. На данный момент нагрузка соответствует нормам.

Также на фотографии сверху показано где можно дополнительно снять нагрузку.

Пояснение: Нет смысла снимать нагрузку в полтора киловатта с фазы С, которая питает некоторые комнаты магазина. А вот если добавить на Головной станции дополнительный кондиционер двух киловаттный, на фазу В, то нагрузка по фазам примерно станет равномерная, по 20 — 25 АМП. на одну фазу. И в обязательном порядке провести ППР(Планово-предупредительный ремонт) электрооборудования. Протяжку болтовых соединений. осмотр автоматических пускателей, контактов.

Оптимальная длина кабельной линии 0,4 кВ

Давайте посмотрим, самый общий алгоритм подбора кабеля в сети 0,4 кВ. Подбор сечения кабеля в электросети 0,4кВ проводится по потере напряжения по следующему алгоритму.

  • Сложить всю нагрузку сети;
  • Умножить полученную нагрузку на коэффициент использования, К=0,7;
  • По полученному значению (Ux) вычислить ток нагрузки, по формуле:

I=P/Ux Cos(фи)

где cos(фи) принимаем равным 0,9. По этому току можно выбрать номинал вводного автомата и значение тока расцепителя в трансформаторной подстанции;

Теперь рассчитываем кабель

  • По току нагрузки, но не менее тока нагрузки расцепителя в подстанции, по таблицам ПУЭ подбираем сечение кабеля;
  • Если планируется вести несколько кабелей, ток нагрузки умножаем на поправочные коэффициенты. Используем другие поправочные коэффициенты, если нужно;

Делаем расчет на потери напряжения по длине. Формула простая:

dU=(PxL)÷(KxS)

  • P – активная мощность;
  • L – длина кабеля;
  • K – коэффициент, равный для однофазной сети алюминиевого кабеля =46, для медного кабеля = 77, для техфазной сети = 12,8 (алюминий) и = 7,7 (медь).
  • S – сечение кабеля по жилам.
  • Для силовых сетей, потеря напряжения не должна превышать 5%;
  • Для освещения промпредприятий и общественных зданий не более 2,5%,
  • Для сетей освещения жилых домов и освещения улиц 5%.

Если потеря мощности по длине не укладывается в эти рамки, меняется сечение или марка кабеля.

Оптимальная длина кабельной линии 0,4 кВ

Совсем недавно я рассказывал про размещение трансформаторной подстанции, а сегодня хочу вам показать зависимость сечения кабельной линии от расстояния до источника питания. Введем такое понятие как оптимальная длина кабельной линии.

Есть ли вообще такое понятие? Если нет, то давайте дадим ему определение

Оптимальная длина кабельной линии – это максимальная длина кабельной линии для конкретного сечения, при которой не требуется завышать сечение кабеля из-за больших потерь напряжения и низких токов короткого замыкания.

Оптимальная длина кабеля – это еще экономически целесообразная длина КЛ.

Как будем рассчитывать оптимальную длину кабеля? Рассмотрим сечения четырехжильных кабелей от 16 до 240 мм2. Для каждого кабеля определим максимальный ток в зависимости от длительно допустимого тока кабеля и автоматического выключателя. Максимальные потери напряжения примем 5%, хотя я стараюсь по возможности проектировать таким образом, чтобы потери в наружных сетях не превышали 4%, это актуально для объектов, которые имеют длинные распределительные и групповые сети.

При помощи своих программ я подобрал оптимальную длину кабелей для разных сечений алюминиевых кабелей. Коэффициент мощности принял 0,85. Результаты расчетов представлены в таблице:

С учетом всех расчетов можно сделать вывод, что оптимальная длина кабелей 0,4 кВ– 200 м. Однако, я бы разделил все кабели на две группы:

  • сечения 16-50мм2;
  • сечения 70-240 мм2.

Для группы 16-50мм2 – средняя оптимальная длина будет 160 м, а для группы 70-240 мм2 – 230м.

Следует иметь ввиду, что токи к.з. указаны условно, т.к. зависят от мощности питающих трансформаторов. Я ориентировался на трансформатор 630 кВА.

Зачем знать оптимальную длину кабеля?

В большинстве случаев мы не можем повлиять на длину кабельной линии, однако, расчетная таблица позволит выполнить предварительный выбор сечения кабелей.

В одном из комментариев написали, что рекомендуют размещать трансформаторную подстанцию на расстоянии не более 300 м от потребителя. В действительности это расстояние немного даже завышено.

Или вы не согласны со мной?

Советую почитать:

Расчет освещения точечным методом

Создание микроклимата в щите

Освещение в коридоре

Расчет тока утечки в разветвленной цепи

Расчет по потерям

Важной расчетной величиной в сетях 0,4 кВ, является падение напряжения по длине кабеля. Читаем ПУЭ по этой теме:

  • В главе 7, п. 14 и 27 говорят, что выбирать сечения проводов и кабелей в сетях до 10кВ, нужно по допустимым параметрам тока нагрузки и потере напряжения по длине. Не путаем потерю напряжения по длине и отклонение напряжения в сети.
  • Там же читаем, что допустимые потери напряжения по длине линии от ТП до приёмника, не должны превышать 10%.

Разумно принять, что от подстанции до ВРУ потеря по длине не должна превышать 7,5%, от вру до щитка 2% и от щитка до приемников еще 2%. Итого всего 10%, согласно ПУЭ.

Требования к воздушным линиям 0,4 кВ:

ВЛ 0,4 кВ должна выполняться в трехфазном 4-проводном исполнении по радиальной схеме проводами одного сечения по всей длине линии (магистрали) от подстанций 10/0,4 кВ.
ВЛ 0,4 кВ выполняются только с использованием самонесущих изолированных проводов.

Протяженность линий должна ограничиваться техническими условиями по критерию качества напряжения, надежности электроснабжения потребителя и экономическими показателями (техническими потерями электроэнергии в линии и затратами на ее распределение).

На вводах к абонентам устанавливать устройства для ограничения потребляемой мощности (совместная работа с энергосбытовой организацией). Устройства ограничения мощности должны обеспечивать автоматическое отключение абонента от электрической сети в случае превышения мощности его электроустановок и обратное включение с выдержкой времени.

Порядок сдачи в эксплуатацию

После завершения монтажа ВЛ 0,4 кВ, сдавая объект в эксплуатацию производитель работ обязан:

  • Предоставить пакет обязательных документов, состав которого определяется действующими нормативными требованиями.
  • Провести приёмосдаточные испытания на соответствие требованиям ПУЭ.

В ходе испытаний производятся:

  • Контроль параметров соединительной и контактной арматуры (выборочно, в пределах 2 – 15%), включающий наружный осмотр и измерение электрического сопротивления контакта.
  • Замеры сопротивления изоляции на всех участках (при проверке мегомметром на 1000 В показания не должны быть не ниже 0,5 МОм) и испытания высоким напряжением.
  • Проверка маркировки жил в зажимах (соединительных и ответвительных).
  • Контроль заземляющих устройств, в ходе которого производится визуальный осмотр на предмет оценки качества резьбовых соединений и сварных швов и измерение сопротивления заземлителей на разных участках. По результатам замеров вычисляется ток однофазного замыкания.
  • Проверка габаритов ВЛИ и стрел провеса СИП.

При обнаружении в ходе проводимых испытаний отклонений от строительных требований, объект не должен приниматься в эксплуатацию.

Порядок проведения работ

В соответствии с утверждённым строительными нормативами порядком, на типовом участке энергосети монтаж ВЛ 0,4 кВ производится в несколько этапов:

  1. Устанавливаются опоры и крепёжные устройства.
  2. Разматываются и подвешиваются СИП.
  3. Кабели натягиваются с помощью анкерных креплений.
  4. Натяжные ролики меняются на фиксирующие зажимы.
  5. Подготавливаются (если необходимо) линейные ответвления от основной магистрали.
  6. Обустраиваются заземления для защиты ВЛИ от КЗ или перенапряжения.
  7. Устанавливаются системы освещения.
  8. Обустраиваются трансформаторные выводы и изолированные соединения.

Грозозащитные заземления в обязательном порядке располагают в местах ответвлений линии электропередач к местам, предполагающим большое скопление людей. Минимальное расстояние между размещёнными на опорах грозозащитными заземлениями не должно превышать 120 метров.

Конструктивное исполнение

КТП-1000 представляет собой сборно-сварную металлоконструкцию. Корпус подстанции выполнен с каркасом из стальных профилей, имеющих стойкое покрытие, обеспечивающее повышенную коррозийную стойкость и современный дизай. Корпус подстанции обшит оцинкованными листами толщиной 1,2 мм.

Возможно изготовление КТП-1000 «северного» исполнения.

Корпус КТП-1000 как правило, представляет собой:

  • распределительное устройство высокого напряжения РУВН-6(10) кВ с ячейками типа КСО,
  • отсек силового трансформатора,
  • распределительного устройства низкого напряжения РУНН-0,4 кВ с ячейками типа ЩО.

Компоновка КТП-1000 и ее габариты — зависят от схемы электрических соединений, количества ячеек и трансформаторов. Отсеки КТП-1000 разделены металлическими перегородками, и имеют отдельные двери, запирающиеся замками.

Для вентиляции и охлаждения установленных внутри отсека аппаратов — двери имеют проемы с жалюзи. В отдельных случаях камера трансформатора может быть снабжена осевым вытяжным вентилятором.

В РУВН и РУНН подстанции ячейки располагаются в один ряд с образованием коридора обслуживания. Модули КТП-1000 комплектуются приборами освещения, отопления и вентиляции с готовой разводкой проводов, что позволяет выполнять монтаж подстанции в более короткие сроки.

Высоковольтный ввод, по заказу, выполняется воздушным, с установкой на крыше отсека проходных изоляторов с ОПН или кабельным, через пол или стены. Низковольтные выводы могут быть кабельными или воздушными, с установокой на крыше КТП-1000 рамы с изоляторами для ВЛ-0,4 кВ.

Основание КТП-1000 представляет цельносварную конструкцию из профилей, которая имеет сплошной или просечной настил с маслоприемным отверстием для аварийного сброса масла из трансформатора и отверстиями для ввода и вывода кабелей. Прочность основания трансформаторного модуля рассчитана на установку одного силового трансформатора мощностью до 2500 кВА.

РУВН на КТП мощностью свыше 250 кВА может выполняться, на базе камер серии KCO-3хх-КН, а свыше 1000 кВА могут быть выполнены на базе КСО-2хх-КН с вакуумными выключателями.

РУНН, комплектуются панелями ЩО-70-КН как с автоматическими выключателями на вводе и отходящих линиях, так и с рубильниками и предохранителями.

В РУНН может быть предусмотрена возможность установки:

  • учета электроэнергии;
  • автоматического или местного управления уличным освещением;
  • автоматических выключателей для собственных нужд (освещения, отопления и вентиляции).

Присоединение КТП-1000 к воздушной линии ВЛ-6(10) кВ, как правило, осуществляется через трехполюсный линейный разъединитель типа РЛНД-10 или аналогичный ему.

В качестве силовых трансформаторов применяются трансформаторы как с сухой так и с масляной основной изоляцией обмоток.

Перед отправкой все модули собираются, прокладываются все межмодульные связи, производится маркировка и комплексное тестирование электрооборудования. По заказу в КТП-1000 может выполняется: электроосвещение; электроотопление; естественная или принудительная вентиляция; сплит-система кондиционирования и пожарная сигнализация.

Включение КТП-1000 в работу

Подготовить силовой трансформатор к включению согласно инструкции по эксплуатации трансформатора. Установить пререключатель обмоток ВН трансформатора в нулевое положение.

Запереть дверь камеры трансформатора и двери между РУ различного напряжения на замок.

Предупредить персонал о подаче напряжения, вывесить, если необходимо, плакаты безопасности.

Проверить наличие и исправность средств пожаротушения.

Включение КТП-1000 на рабочее напряжение производится по наряду после выполнения организационных и технических мероприятий, указанных в настоящем руководстве, и приемки КТПН в эксплуатацию комиссией потребителя с участием представителей Ростехнадзора и местной энергоснабжающей организации.

голоса
Рейтинг статьи
Читайте так же:
Ближний свет потребление тока
Ссылка на основную публикацию
Adblock
detector