Ele-prof.ru

Электро отопление
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Индуктивные датчики (бесконтактные выключатели). Устройство и принцип работы

Индуктивные датчики (бесконтактные выключатели). Устройство и принцип работы

Индуктивные датчики (бесконтактные выключатели). Устройство и принцип работы

1. Генератор создает электромагнитное поле взаимодействия с объектом.

2. Триггер обеспечивает гистерезис при переключении и необходимую длительность фронтов сигнала управления.

3. Усилитель увеличивает амплитуду сигнала до необходимого значения.

4. Светодиодный индикатор показывает состояние выключателя, обеспечивает контроль работо-способности, оперативность настройки.

5. Компаунд обеспечивает необходимую степень защиты от проникновения твердых частиц и воды.

6. Корпус обеспечивает монтаж выключателя, защищает от механических воздействий. Выполняется из латуни или полиамида, комплектуется метизными изделиями.

При подаче напряжения питания, перед активной поверхностью индуктивного выключателя образуется переменное магнитное поле, создаваемое катушкой индуктивности генератора. При попадании объекта воздействия в зону чувствительности выключателя, снижается добротность колебательного контура и амплитуда колебаний, что вызывает срабатывание триггера и изменение состояния выхода выключателя.

ПРИМЕНЕНИЕ И ОСОБЕННОСТИ ЭКСПЛУАТАЦИИ

Индуктивные выключатели наиболее эффективно использовать в качестве конечных выключателей в автоматических линиях, станках и т.п., так как они срабатывают только на металлы и не чувствительны к остальным материалам. Это увеличивает их защищенность от помех; например, введение в зону чувствительности выключателя рук оператора, эмульсии, воды, смазки и т.д. не приведет к ложному срабатыванию.

Объектом воздействия для индуктивных выключателей являются металлические детали: зубья шестерен, кулачки, ползуны; часто это металлическая пластина, прикрепленная к соответствующей детали оборудования.

Номинальное расстояние воздействия (Sn) и гарантированный интервал воздействия (Sa), указанные в технических характеристиках выключателей, относятся к стандартному объекту воздействия — это квадратная пластина из стали Ст 40, толщиной 1мм, сторона квадрата равна большему из значений: диаметру активной поверхности выключателя или значению 3Sn.

Соотношение для определения реального расстояния воздействия (Sr): 0,9Sn < Sr < 1,1Sn — справедливо для стандартного объекта воздействия .

Если объект воздействия имеет размеры меньше стандартного, то расстояния воздействия Sn, Sr, Sa следует умножить на поправочный коэффициент К. Поправочные коэффициенты К вводят также, если объект воздействия выполнен не из стали, а из других металлов и сплавов.

Поправочный коэффициент К для некоторых металлов и сплавов

Сталь 40
Медь
Латунь
Алюминий
Нерж. сталь
Никель
Нихром
Чугун

1,0
0,25. 0,45
0,35. 0,50
0,35. 0,45
0,60. 1,00
0,65. 0,75
0,82. 0,90
0,93. 1,05

Принцип работы и подключение индуктивных датчиков

Бесконтактный датчик индуктивности позиционируется как сенсор, способный реагировать на металлические предметы, оказавшиеся в его электромагнитном поле. Благодаря этому свойству индуктивных бесконтактных датчиков удается отслеживать перемещение подвижных частей оборудования и при необходимости отключать двигатель приводного механизма. Для распознавания и анализа изменений магнитного поля в их состав вводится специальный электронный узел, называемый контроллером (компаратором).

Устройство и принцип действия

Индукционные датчики положения, помимо электронного компаратора, содержат в своем составе следующие обязательные компоненты:

  • стальной корпус с разъемом для соединительного шнура;
  • встроенный чувствительный элемент, регистрирующий на изменения магнитного поля, выполнен в виде стального сердечника с катушкой;
  • исполнительный релейный модуль;
  • индикатор активации на светодиоде.

Конструкции различных моделей датчиков металла могут иметь некоторые отличия. Они не влияют на сам индукционный датчик, принцип работы его от этого не меняется.

В соответствии с устройством прибора суть его работы описывается следующим образом:

  • перемещение металлической части контролируемого объекта приводит к изменению индуктивности чувствительного элемента датчика;
  • отклонение объясняется искажением его магнитного поля, следствием которого является изменение параметров электрической схемы и ее активация (светодиод загорается);
  • после этого срабатывает электронный модуль и посылает сигнал на исполнительное устройство;
  • при поступлении импульса о превышении перемещением допустимого предела выходной (релейный) узел отключает контролируемое оборудование от сети.

Каждая модель имеет собственный показатель чувствительности по перемещению — зазор смещения. Для различных образцов этот параметр варьируется в пределах от 1 микрона до 20 миллиметров.

Параметры индуктивных датчиков

Помимо диапазона срабатывания или чувствительности индуктивный датчик характеризуется следующими рабочими показателями:

  • Размер (диаметр) посадочной резьбы, у различных образцов принимающий значения от 8-ми до 30-ти мм.
  • Номинальное напряжение питания при температуре плюс 20 градусов, до 90 Вольт постоянного и до 230 Вольт – переменного токов.
  • Общая длина корпуса — ее значение зависит от рабочего напряжения.
Читайте так же:
Электросхема комнаты с двумя выключателями

Последний показатель у различных образцов может варьироваться в значительных пределах.

Для чувствительной или активной зоны прибора вводится еще один параметр, называемый гарантированным пределом срабатывания. Его нижняя граница равна нулю, а верхняя составляет 80 процентов от номинального значения. Этот показатель иногда называют поправочным коэффициентом рабочего зазора.

Не менее важный показатель функциональности чувствительного прибора – количество соединительных проводов в разъеме. Обычно их насчитывается два или три: два питающих и один для активации схемы. Однако возможны варианты подключения, при обустройстве которых используются четыре или пять контактных точек. Подобные образцы кроме двух питающих проводников содержат два выхода на нагрузку. При этом пятый проводник используется для выбора режима работы самого устройства.

Виды выходов и способы подключения

Для оценки действия чувствительного прибора вводится особая характеристика, оцениваемая по состоянию полярности его выходных параметров. В соответствии с общепринятым обозначением полупроводниковых элементов (транзисторов), входящих в состав электронной схемы датчика, эти выходы называются «PNP» и «NPN».

Отличие этих наименований состоит в том, что они обозначают различные полярности (полюса) источника питания чувствительных приборов. PNP транзисторы коммутируют его положительный выход, а NPN – отрицательный. Нагрузкой выходных схем чаще всего является управляющий микропроцессор.

В зависимости от схемы управления контроллером индуктивные датчики обозначаются как HO (нормально открытые) или HЗ – с нормально закрытым входом.

Вариант с NPN транзистором – наиболее распространенный способ включения датчика, поскольку согласно стандартным схемным решениям отрицательный провод делается общим для всех компонентов. В этом случае входы микропроцессоров и других контролирующих устройств активируются положительным напряжением.

Маркировка при подключении

На принципиальных схемах индуктивные датчики принято обозначать в виде ромба или квадрата с двумя вертикальными линиями внутри. Нередко в них также указывается тип выхода (нормально открытый или закрытый), соответствующий одной из разновидностей полупроводниковых транзисторов. В большинстве вариантов схем указывается нормально закрытая группа или оба типа в одном корпусе.

Цветовая маркировка выводов

На практике применяется стандартная система маркировки выводов датчиков индуктивности, которой придерживаются все без исключения производители чувствительных приборов. Тем не менее, перед их монтажом рекомендуется внимательно следить за полярностью подключения и обязательно сверяться с прилагаемой к изделиям инструкцией.

На корпусах всех датчиков имеется рисунок с цветной маркировкой проводов, если это позволяют его размеры.

Стандартный порядок обозначения:

  • синий (Blue) всегда означает минусовую шину питания;
  • коричневым цветом (Brown) обозначается плюсовой проводник;
  • черный (Black) соответствует выходу датчика;
  • белый (White) – это дополнительный выход или вход.

Для уточнения последнего маркировочного обозначения его следует сверить с данными инструкции, прилагаемой к конкретному прибору.

Погрешности датчиков

Погрешность снятия показаний контрольной системой существенно влияет на работу бесконтактного индуктивного датчика. Ее общая величина набирается из отдельных ошибок измерений по различным показателям: электромагнитным, температурным, аппаратным, магнитной упругости и многим другим.

Электромагнитная погрешность определяется как случайно проявляющаяся величина. Она появляется из-за паразитной ЭДС, наведенной в катушке внешними магнитными полями. В производственных условиях этот компонент создается силовым оборудованием с рабочей частотой 50 Герц. Температурная погрешность – один из важнейших показателей, поскольку работать большинство датчиков могут лишь в определенном диапазоне температур. Она обязательно учитывается при проектировании устройств этого класса.

Читайте так же:
Подвижный контакт выключателя нагрузки

Погрешность магнитной упругости вводится как показатель нестабильности деформаций сердечника, возникающей в процессе сборки прибора, а также как тот же фактор, но проявляющийся при его работе. Нестабильности внутренних напряжений в магнитопроводе приводит к ошибкам в обработке выходного сигнала. Погрешность, возникающая в самом чувствительном устройстве, проявляется из-за влияния полевой структуры на коэффициент деформации металлических элементов датчика. Кроме того, на ее суммарное значение существенно влияют люфты и зазоры в подвижных частях конструкции.

Погрешность соединительного кабеля набирается из отклонений величины сопротивления его проводных жил в зависимости от температурного фактора, а также как наводки посторонних электромагнитных полей и ЭДС. Тензометрическая погрешность как случайная величина зависит от качества изготовления намоточных элементов датчика (его катушки, в частности). В различных условиях эксплуатации возможно изменение сопротивления обмотки по постоянному току, приводящее к «плаванию» выходного сигнала. Погрешность старения проявляется вследствие износа подвижных элементов датчика, а также изменения электромагнитных свойств магнитопровода.

Проверить реальную величину этого параметра удается только с помощью сверхточных измерительных приборов. При этом обязательно принимаются во внимание кинематические особенности самого датчика. При проектировании и изготовлении чувствительных элементов такая возможность заранее учитывается в его конструкции.

Для индуктивных и емкостных датчиков характерны режимы работы со многими факторами влияния, определяемыми конкретными условиями эксплуатации. Именно поэтому выбор подходящих для данной марки прибора чувствительности и набора выходных параметров является определяющим при его использовании в качестве конечного выключателя.

Индуктивные датчики. Разновидности, принцип работы

Индуктивный датчик положения

В промышленной электронике индуктивные, оптические и другие датчики применяются очень широко.

Долго и постоянно имею с ними дело, и вот решил написать статью, поделиться знаниями.

Статья будет обзорной (если хотите, научно-популярной). Приведены реальные инструкции к датчикам и ссылки на примеры.

Виды датчиков

Итак, что вообще такое датчик. Датчик – это устройство, которое выдаёт определённый сигнал при наступлении какого-либо определённого события. Иначе говоря, датчик при определённом условии активируется, и на его выходе появляется аналоговый (пропорциональный входному воздействию) или дискретный (бинарный, цифровой, т.е. два возможных уровня) сигнал.

Точнее можем посмотреть в Википедии: Датчик (сенсор, от англ. sensor) — понятие в системах управления, первичный преобразователь, элемент измерительного, сигнального, регулирующего или управляющего устройства системы, преобразующий контролируемую величину в удобный для использования сигнал.

Там же и много другой информации, но у меня своё, инженерно-электронно-прикладное, видение вопроса.

Датчиков бывает великое множество. Перечислю лишь те разновидности датчиков, с которыми приходится сталкиваться электрику и электронщику.

Индуктивные. Активируется наличием металла в зоне срабатывания. Другие названия – датчик приближения, датчик положения, индукционный, датчик присутствия, индуктивный выключатель, бесконтактный датчик или выключатель. Смысл один, и не надо путать. По-английски пишут “proximity sensor”. Фактически это – датчик металла.

Оптические. Другие названия – фотодатчик, фотоэлектрический датчик, оптический выключатель. Такие применяются и в быту, называются “датчик освещённости”

Емкостные. Срабатывает на наличие практически любого предмета или вещества в поле активности.

Давления. Давления воздуха или масла нет – сигнал на контроллер или рвёт аварийную цепь. Это если дискретный. Может быть датчик с токовым выходом, ток которого пропорционален абсолютному давлению либо дифференциальному.

Концевые выключатели (электрический датчик). Это обычный пассивный выключатель, который срабатывает, когда на него наезжает или давит объект.

Датчики могут называться также сенсорами или инициаторами.

Пока хватит, перейдём к теме статьи.

Читайте так же:
Бокс под автоматический выключатель с пломбировкой

Принцип работы индуктивного датчика

Индуктивный датчик является дискретным. Сигнал на его выходе появляется, когда в заданной зоне присутствует металл.

В основе работы датчика приближения лежит генератор с катушкой индуктивности. Отсюда и название. Когда в электромагнитном поле катушки появляется металл, это поле резко меняется, что влияет на работу схемы.

принцип работы индуктивного датчика

Поле индукционного датчика. Металлическая пластина меняет резонансную частоту колебательного контура

И схема, содержащая компаратор, выдаёт сигнал на ключевой транзистор или реле. Нет металла – нет сигнала.

Схема индуктивного датчика

Схема индуктивного npn датчика. Приведена функциональная схема, на которой: генератор с колебательным контуром, пороговое устройство (компаратор), выходной транзистор NPN, защитные стабилитрон и диоды

Большинство картинок в статье – не мои, в конце можно будет скачать источники.

Применение индуктивного датчика

Индуктивные датчики приближения применяются широко в промышленной автоматике, чтобы определить положение той или иной части механизма. Сигнал с выхода датчика может поступать на вход контроллера, преобразователя частоты, реле, пускателя, и так далее. Единственное условие – соответствие по току и напряжению.

Работа индуктивного датчика

Работа индуктивного датчика. Флажок движется вправо, и когда достигает зоны чувствительности датчика, датчик срабатывает.

Кстати, производители датчиков предупреждают, что не рекомендуется подключать непосредственно на выход датчика лампочку накаливания. О причинах я уже писал – ток при включении лампы значительно превышает номинальный.

Характеристики индуктивных датчиков

Чем отличаются датчики.

Почти всё, что сказано ниже, относится не только к индуктивным, но и к оптическим и ёмкостным датчикам.

Конструкция, вид корпуса

Тут два основных варианта – цилиндрический и прямоугольный. Другие корпуса применяются крайне редко. Материал корпуса – металл (различные сплавы) или пластик.

Диаметр цилиндрического датчика

Основные размеры – 12 и 18 мм. Другие диаметры (4, 8, 22, 30 мм) применяются редко.

Чтобы закрепить датчик 18 мм, нужны 2 ключа на 22 или 24 мм.

Расстояние переключения (рабочий зазор)

Это то расстояние до металлической пластины, на котором гарантируется надёжное срабатывание датчика. Для миниатюрных датчиков это расстояние – от 0 до 2 мм, для датчиков диаметром 12 и 18 мм – до 4 и 8 мм, для крупногабаритных датчиков – до 20…30 мм.

Количество проводов для подключения

Подбираемся к схемотехнике.

2-проводные. Датчик включается непосредственно в цепь нагрузки (например, катушка пускателя). Так же, как мы включаем дома свет. Удобны при монтаже, но капризны к нагрузке. Плохо работают и при большом, и при маленьком сопротивлении нагрузки.

2-проводный датчик. Схема включения

Нагрузку можно подключать в любой провод, для постоянного напряжения важно соблюдать полярность. Для датчиков, рассчитанных на работу с переменным напряжением – не играет роли ни подключение нагрузки, ни полярность. Можно вообще не думать, как их подключать. Главное – обеспечить ток.

3-проводные. Наиболее распространены. Есть два провода для питания, и один – для нагрузки. Подробнее расскажу отдельно.

4- и 5-проводные. Такое возможно, если используется два выхода на нагрузку (например, PNP и NPN (транзисторные), или переключающие (реле). Пятый провод – выбор режима работы или состояния выхода.

Виды выходов датчиков по полярности

У всех дискретных датчиков может быть только 3 вида выходов в зависимости от ключевого (выходного) элемента:

Релейный. Тут всё понятно. Реле коммутирует необходимое напряжение либо один из проводов питания. При этом обеспечивается полная гальваническая развязка от схемы питания датчика, что является основным достоинством такой схемы. То есть, независимо от напряжения питания датчика, можно включать/выключать нагрузку с любым напряжением. Используется в основном в крупногабаритных датчиках.

Читайте так же:
Автоматический выключатель насосов греющего контура отопления ms450

Транзисторный PNP. Это – PNP датчик. На выходе – транзистор PNP, то есть коммутируется “плюсовой” провод. К “минусу” нагрузка подключена постоянно.

Транзисторный NPN. На выходе – транзистор NPN, то есть коммутируется “минусовой”, или нулевой провод. К “плюсу” нагрузка подключена постоянно.

Можно чётко усвоить разницу, понимая принцип действия и схемы включения транзисторов. Поможет такое правило: Куда подключен эмиттер, тот провод и коммутируется. Другой провод подключен к нагрузке постоянно.

Ниже будут даны схемы включения датчиков, на которых будет хорошо видно эти отличия.

Виды датчиков по состоянию выхода (НЗ и НО)

Какой бы ни был датчик, один из основных его параметров – электрическое состояние выхода в тот момент, когда датчик не активирован (на него не производится какое-либо воздействие).

Выход в этот момент может быть включен (на нагрузку подается питание) либо выключен. Соответственно, говорят – нормально закрытый (нормально замкнутый, НЗ) контакт либо нормально открытый (НО) контакт. В иностранной аппаратуре, соответственно – NС и NО.

То есть, главное, что надо знать про транзисторные выходы датчиков – то, что их может быть 4 разновидности, в зависимости от полярности выходного транзистора и от исходного состояния выхода:

  • PNP NO
  • PNP NC
  • NPN NO
  • NPN NC

Контакты датчиков также могут быть с задержкой включения или выключения. Про такие контакты также сказано в статье про приставки выдержки времени ПВЛ. А почему датчики, отвечающие за безопасность, должны быть обязательно с НЗ контактами – см. статью про Цепи безопасности в промышленном оборудовании.

Кстати, если Вам вообще интересно то, о чем я пишу, подписывайтесь на получение новых статей и вступайте в группу в ВК!

Положительная и отрицательная логика работы

Это понятие относится скорее к исполнительным устройствам, которые подключаются к датчикам (контроллеры, реле).

ОТРИЦАТЕЛЬНАЯ или ПОЛОЖИТЕЛЬНАЯ логика относится к уровню напряжения, который активизирует вход.

ОТРИЦАТЕЛЬНАЯ логика: вход контроллера активизируется (логическая “1”) при подключении к ЗЕМЛЕ. Клемму S/S контроллера (общий провод для дискретных входов) при этом необходимо соединить с +24 В=. Отрицательная логика используется для датчиков типа NPN.

ПОЛОЖИТЕЛЬНАЯ логика: вход активизируется при подключении к +24 В=. Клемму контроллера S/S необходимо соединить с ЗЕМЛЕЙ. Используйте положительную логику для датчиков типа PNP. Положительная логика применяется чаще всего.

Существуют варианты различных устройств и подключения к ним датчиков, спрашивайте в комментариях, вместе подумаем.

Продолжение статьи – здесь >>>. Во второй части даны реальные схемы и рассмотрено практическое применение различных типов датчиков с транзисторным выходом.

Скачать инструкции и руководства на некоторые типы индуктивных датчиков:

• Autonics_proximity_sensor / Каталог датчиков приближения Autonics, pdf, 1.73 MB, скачан: 1826 раз./

• Omron_E2A / Каталог датчиков приближения Omron, pdf, 1.14 MB, скачан: 2376 раз./

• ТЕКО_Таблица взаимозаменяемости выключателей зарубежных производителей / Чем можно заменить датчики ТЕКО, pdf, 179.92 kB, скачан: 1829 раз./

• Turck_InduktivSens / Датчики фирмы Turck, pdf, 4.13 MB, скачан: 2355 раз./

• pnp npn / Схема включения датчиков по схемам PNP и NPN в программе Splan/ Исходный файл., rar, 2.18 kB, скачан: 3714 раз./

Выберите Ваше решение

MB1

Очень высокая защита от манипуляций

С помощью соответствующего варианта защитного выключателя с транспондерной технологией достигаются разные степени сложности кодирования. При универсальном кодировании воспринимаются все актуаторы, при уникальном и постоянном кодировании воспринимается только ранее запрограммированный актуатор и, таким образом, достигается более высокая степень кодирования.

Читайте так же:
Выключатель заменить блок розетка выключателем

Защитные запирающие устройства и бесконтактные защитные выключатели с транспондерной технологией

Высокий уровень защиты от манипуляций достигается за счёт уникального или постоянного кодирования защитного выключателя. Поэтому изготовители машин могут отказаться от дополнительных монтажных мероприятий. Вам не нужно тратиться на скрытый монтаж защитного выключателя, монтаж за пределами досягаемости рабочего или дополнительное устройство блокировки для проверки достоверности, а это экономит расходы.

Бесконтактные защитные выключатели — интеллектуальные решения, износостойкие и неприхотливые в обслуживании

Задачи бесконтактных защитных выключателей

Контроль безопасного положения

Индуктивные защитные выключатели гарантируют простой и безопасный контроль положения и определённой зоны. При этом они контролируют подвижные детали машины.

Эти защитные выключатели абсолютно не подвержены износу и работают без специальных актуаторов; их принцип действия заключается в том, что они должны обнаружить лишь металлический объект. Это может быть, к примеру, металлическая деталь машины, которую защитный выключатель обнаруживает как раз тогда, когда она находится в заранее определённом положении. Разнообразие вариантов позволяет осуществлять монтаж во все виды машин.

Безопасная защита доступа

В машинах и производственных линиях есть двери и крышки, которые необходимо защищать. Для оптимальной защиты доступа используются бесконтактные защитные выключатели, которые обеспечивают большой допуск на смещение двери. Магнитные и транспондерные защитные выключатели работают с минимальным износом и практически не требуют техобслуживания, а также обеспечивают высокую степень защиты от манипуляций.

Защитные запирающие устройства предотвращают неконтролируемое вмешательство

Варианты защитных запирающих устройств

Электромагнитные запирающие устройства — это проверенное решение для тех случаев применения, в которых требуется высокая и надёжная сила запирания и не предъявляются высокие требования к уровню эффективности защиты или к защите от манипуляций.

Магнитное защитное запирающее устройство является эффективным решением в тех случаях применения, где в дополнение к предохранительной функции требуется обеспечить защиту процесса. Защитное запирающее устройство обеспечивает очень высокий уровень безопасности при контроле дверей и благодаря сильному магниту гарантирует, что защитная дверь остаётся закрытой, а производственный процесс идёт бесперебойно.

Запирающие устройства с транспондерным контролем сочетают в себе высокую и надёжную силу запирания с высокой безопасностью транспондерной технологии, что означает уровень эффективности защиты «e» и максимальную защиту от манипуляций.

Объединение защитных устройств в сеть посредством безопасного последовательного подключения

Варианты безопасного последовательного подключения

Жёсткое подключение датчиков

Если используется всего несколько датчиков и требования к ним невысоки (например, при редком включении), то датчики с беспотенциальными контактами можно объединить в последовательную цепь путём жёсткого подключения — это просто экономически выгодно.

Безопасное последовательное подключение в распределительном шкафу

Если вы хотите сэкономить на безопасных входах на контроллере безопасности, подключив их последовательно, но не хотите отказываться от диагностики, то последовательное подключение защитных выключателей в распределительном шкафу станет для вас подходящим решением. Сигнальные выходы могут подключаться по отдельности, полупроводниковые выходы могут оцениваться вместе.

Простое последовательное подключение с помощью тройника

Последовательное подключение с помощью тройника — это решение для датчиков с полупроводниковыми выходами. Оно обеспечивает очень высокий уровень безопасности и простое подключение с помощью штекерных соединителей М12 и Т-образных разъёмов.

Гибкое последовательное подключение с Flexi Loop

Flexi Loop — это гибкое решение для безопасного последовательного подключения до 32 защитных выключателей, благодаря индивидуальному контролю до уровня эффективности защиты «е». Подробная диагностика позволяет быстро устранять неисправности. Подключение выполняется легко с помощью соединительных изделий M12.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector