Ele-prof.ru

Электро отопление
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Источники тока. Электрическая цепь

Источники тока. Электрическая цепь

В 1786 г. итальянский анатом и физиолог Луиджи Гальвани решил изучить действие атмосферного электричества на мышцы лягушки. Для этого он прикрепил к нерву лапки свежепрепарированной лягушки медный крючок, после чего подвесил лапку к железной решетке, окружавшей висячий садик его дома. Однако никакого действия атмосферы не последовало. И лишь тогда, когда под порывами ветра лапка случайно коснулась решетки забора, ее мускулы резко содрогнулись. Гальвани решил повторить опыты дома. Положив лапку на железную дощечку, он снова обнаружил конвульсивные сокращения мышц. После четырех лет всестороннего исследования открытого им явления Гальвани сообщил о своих наблюдениях в книге, которая называлась «Трактат о силах электричества при мышечном движении».

Появление этой книги вызвало огромный интерес в среде ученых. Опыты с лягушачьей лапкой стали повторять и физики, и химики, и философы, и врачи. Но лишь одному из них — итальянскому ученому Алессандро Вольта удалось понять истинную причину наблюдаемого эффекта.
Алессандро Вольта

Лапка сокращается не потому, что в лягушке сосредоточено какое-то особое «животное» электричество (как считал Гальвани), а потому, что через нее проходит электрический ток, возникающий благодаря контакту двух проводников из разных металлов, — к такому выводу пришел Вольта после тщательных исследований этого явления. По мнению Вольта, лягушка в этих опытах нужна лишь как «электрометр, в десятки раз более чувствительный, чем даже самый чувствительный электрометр с золотыми листочками». Поэтому тот же ток можно получить и без использования лягушки, если только позаботиться о том, чтобы разнородные металлы соприкасались с жидкостью, способной проводить электричество. И Вольта подтверждает свой вывод опытом на самом себе: соединив одни концы серебряной и оловянной проволочек между собой, он прикасается их противоположными концами к своему языку. Появившийся при этом кисло-горький вкус означал, что по языку пошел ток. Если бы источником электричества была сама мышца языка, то вкус должен был бы ощущаться и тогда, когда металлы одинаковые; этого, однако, не происходило.

Вольта продолжает опыты. Он берет две монеты из разного вещества и одну из них кладет себе на язык, а другую — под него. Соединив монеты проволочкой, он снова ощущает специфический вкус.

Наконец, в 1800 г. Вольта берет несколько десятков пар круглых пластин (из цинка и серебра) и, проложив между ними кружочки картона, смоченные соленой водой, располагает их в виде столба. Подсоединив к верхней и нижней пластинам столба провода, Вольта получает первый источник постоянного тока (вольтов столб).
На демонстрации вольтова столба перед французскими учеными присутствовал Наполеон Бонапарт. Опыты Вольта произвели на присутствующих очень сильное впечатление. Поэтому неудивительно, что за свои исследования Вольта получил титул графа и стал рыцарем Почетного легиона.

В последующие годы источники тока непрерывно совершенствовались и в конце концов приобрели тот вид, к которому мы все привыкли (рис. 22).
Источники тока

Конструкции современных источников разнообразны. Те из них, которые работают за счет химических реакций, называют химическими источниками тока. К ним относятся гальванические элементы (или просто элементы) и аккумуляторы.

Гальванические элементы (названные так в честь Л. Гальвани) являются источниками тока, как правило, разового пользования. Аккумуляторы же можно использовать многократно, периодически заряжая их.

У любого из этих источников имеются два полюса — положительный (+) и отрицательный (–). Разные заряды этих полюсов обусловлены химическими реакциями, протекающими внутри источника на проводниках (электродах), погруженных в специальный раствор.

Если с помощью проводов к источнику тока подключить какие-либо устройства, потребляющие электроэнергию, то под действием электрического поля, создаваемого источником, через них пойдет ток.

Соединенные друг с другом источник тока, провода и потребители электроэнергии (лампы, электроплитки, электро- и радиоаппаратура) образуют электрическую цепь.

Для того чтобы в цепи мог идти постоянный ток (т. е. ток, не изменяющийся с течением времени), электрическая цепь должна быть замкнутой. Если же где-то появится обрыв, то ток в цепи прекратится. На этом основано действие кнопок, рубильников, ключей и других устройств, позволяющих включать и выключать в цепи ток. Некоторые из этих выключателей, применяемые в школьных опытах, показаны на рисунке 23. На рисунке 24 изображен клавишный выключатель, используемый в помещениях для замыкания и размыкания скрытой электропроводки.
Выключатели электрической цепи

Для подключения электрооборудования или бытовой техники к сети используют специальные соединители, например штепсельные розетку (рис. 25, а) и вилку (рис. 25, б).
Соединители к электрической цепи

При замыкании цепи электрическое поле источника со скоростью 300000 км/с распространяется вдоль проводников, и свободные заряженные частицы в них практически одновременно приходят в упорядоченное движение — в цепи появляется ток.

За направление тока в цепи принимают то направление, в котором должны были бы двигаться по цепи положительные заряды, т. е. направление от положительного полюса источника тока к отрицательному. Такое соглашение было принято в первой половине XIX в. и с тех пор учитывается во всех правилах и законах теории электрического тока.

В металлических проводниках ток создается отрицательно заряженными частицами (электронами), которые движутся по цепи от отрицательного полюса источника к положительному. Направление тока и направление движения носителей тока в этом случае противоположны.

В растворах кислот, солей и щелочей (электролитах) носителями тока являются положительные и отрицательные ионы. Первые из них движутся в направлении от «+» источника к его «–», вторые — от «–» к «+».

Чертежи, на которых изображают электрические цепи, называют схемами. Каждый элемент цепи на схемах обозначают специальным условным знаком. Некоторые из этих условных обозначений приведены в таблице 2 и на форзаце.
Элементы электрической цепи
Примеры электрических схем представлены на рисунке 26. На каждой из этих схем две лампы. Однако способ их включения различен. Соединение ламп, изображенное на рисунке 26, а, называют последовательным, а соединение ламп, изображенное на рисунке 26, б, — параллельным.
Электрические схемы

. 1. Кто и когда изобрел первый источник тока? 2. Какие химические источники тока вы знаете? 3. Из чего состоит электрическая цепь? 4. Какой должна быть цепь, чтобы в ней мог существовать постоянный электрический ток? 5. Какое направление в цепи выбирают за направление тока? Совпадает ли оно с направлением движения свободных электронов? 6. Зачем в электрической цепи нужен источник тока?

Экспериментальное задание. Возьмите лимон, яблоко или соленый огурец и воткните в него два проводника. Одним из них может быть медный провод, а другим — железный гвоздь. Принесите изготовленный таким образом источник тока в школу и, подсоединив его проводами к гальванометру, убедитесь, что источник работает. (Гальванометром называют прибор для регистрации и измерения слабых токов. Школьный демонстрационный гальванометр изображен на рисунке 27.)

Что такое электричество?

Август 14th, 2012 Рубрика: Электротехника

elektrichestvo_электричество

Здравствуйте, уважаемые читатели и гости сайта http://zametkielectrika.ru.

Сегодня я хочу рассказать Вам вкратце, что такое электричество.

А то все изучаем темы по электричеству, а про основы и внутренние процессы его возникновения даже не задумываемся.

Читайте так же:
Ударит ли током при выключенном выключателе

Сильно углубляться в изучение происхождения и возникновения электричества мы не будем, т.к. это очень трудоемко и время затратно, а вот рассмотреть основы я считаю нужно.

Как Вы все знаете из курса школьной физики, а может и не знаете, все тела состоят из следующих мельчайших частиц:

  • молекула
  • молекула в свою очередь состоит из атомов
  • атом состоит из протонов, нейтронов и электронов

Так вот каждая из перечисленных частиц обладает своим электрическим зарядом.

Заряд бывает положительным, либо отрицательным. Соответственно, тело с положительным зарядом всегда притягивается к телу с отрицательным зарядом. А два тела с положительными зарядами, либо отрицательными, всегда отталкиваются друг от друга.

Разноименные заряженные тела притягиваются, а одноименные — отталкиваются, т.е. в этот момент можно наблюдать тенденцию движения этих тел.

Интенсивность и скорость движения мельчайших частиц в телах зависит от множества следующих факторов:

  • свет
  • температура
  • деформация
  • трение
  • химические реакции

Происхождение и возникновение электричества

Чуть выше я упоминал, что атом состоит из протонов, нейтронов и электронов. Так вот протоны (положительно заряженные) и нейтроны (нейтрально заряженные) это и есть само ядро атома. На изображении ниже смотрите из чего состоит атом.

elektrichestvo_электричество

Ядро атома всегда имеет положительный заряд. Нейтрон (показаны красным цветом) не обладает электрическим зарядом. Протон (показаны голубым цветом) обладает всегда положительным зарядом.

Вокруг этого ядра вращаются отрицательно заряженные электроны (изображены синим цветом), которые могут находиться от ядра на различном расстоянии, в зависимости от материала вещества. Расстояние, а точнее, энергетический уровень электрона, зависит от энергии, которую электрон может поглощать из вне (обычно от фотонов) и излучать. Этим занимаются электроны внешних электронных оболочек (самые удалённые от ядра). Если электрон «захапает» слишком много энергии, то может покинуть атом, о чём и говорится чуть ниже. Т.е. взаимодействие атома с другими атомами и прочими частицами происходит благодаря внешним электронам.

Заряд электрона в точности равен заряду протона по величине и противоположен по знаку. Поэтому в целом атом нейтрален.

Взаимодействие положительных протонов ядра с отрицательными электронами не всегда постоянно, и по мере удаления электронов от ядра оно уменьшается.

Т.е. получается, что количество электронов в атомах мы можем изменить.

Способы воздействия и факторы, воздействующие на тела я упоминал выше — это свет, температура, деформация, трение и различные химические реакции. А теперь о каждом воздействии поговорим подробнее.

Например, под воздействием светового излучения на вещество, из него могут вылететь электроны, которые в свою очередь заряжаются положительным зарядом. Такое явление в физике названо фотоэффектом. О нем мы поговорим в следующих статьях. Чтобы не пропустить новые статьи — подпишитесь на получение уведомления о выходе новых статей на сайте.

На явлении фотоэффекта основан принцип действия фотоэлементов.

Температура

При воздействии на вещество (тело) высокой температурой, удаленные от ядра электроны увеличивают свою скорость вращения вокруг ядра и в один прекрасный момент им хватает кинетической энергии, чтобы оторваться от ядра. В этом случае электроны становятся свободными частицами с отрицательными зарядами.

Такое явление в физике называется термоэлектронной эмиссией. Применяется это явление достаточно обширно. Но об этом в следующих статьях. Следите за обновлениями на сайте.

Химическая реакция

При химических реакциях в результате переноса зарядов образуются положительные и отрицательные полюсы. На этом основано устройство аккумуляторов.

Трение и деформация

При воздействии на некоторые тела трением, сжатием, растяжением или же просто деформировать их, то на их поверхности могут появиться электрические заряды. Такое явление физики называют пьезоэлектрическим эффектом, или сокращенно, пьезоэффектом.

Электродвижущая сила

При каждом способе воздействия на тело, в результате появляются небольшие источники двух полярностей: положительной и отрицательной. Каждая из этих полярностей имеет свою величину, которая называется потенциалом. Все Вы наверное слышали такое выражение.

Потенциал — это запасенная потенциальная энергия единицы количества электричества, находящейся в определенной точке электрического поля.

Так вот, чем больше потенциал, тем больше разница между положительным и отрицательным полюсами. Эта вот самая разница потенциалов и есть электродвижущая сила (ЭДС).

Если цепь замкнуть, то под действием ЭДС источника в цепи появится электрический ток.

Единицей измерения разницы потенциалов является вольт. Измерить разницу потенциалов можно вольтметром, мультиметром или электроизмерительными клещами.

Электрический ток. Источники электрического тока — ЭЛЕКТРИЧЕСКИЕ ЯВЛЕНИЯ

Используемые технологии: здоровьесбережения, информационно-коммуникационные, развития критического мышления, педагогики сотрудничества.

Цель: дать представление о природе электрического тока, условиях его возникновения и существования, источниках электрического тока.

Формируемые УУД: предметные: научиться объяснять понятия электрический ток, источник тока определять виды источников тока; объяснять физическую природу электрического тока, условия его возникновения и существования; метапредметные: осуществлять контроль и самоконтроль понятий и алгоритмов; формировать целеполагание как постановку учебной задачи на основе соотнесения того, что уже известно и усвоено учащимися, и того, что еще неизвестно; объяснять физическую природу электрического тока и условия его возникновения и существования; личностные: формирование самостоятельности в приобретении новых знаний; использование приобретенных знаний в повседневной жизни.

Приборы и материалы: источники тока, гальванические элементы, электрофорная машина, аккумулятор, термопара, фотоэлементы, магнитная стрелка на подставке, гвоздь, лимон или один клубень картофеля, амперметр, соединительные провода, электронное приложение к учебнику.

I. Организационный момент

(Учитель и ученики приветствуют друг друга, выявляются отсутствующие.)

II. Актуализация знаний. Проверка домашнего задания

(Учитель проводит фронтальный опрос по вопросам и заданиям учебника. Ученики выполняют дифференцированную самостоятельную работу.)

1. Существует ли электрическое поле вокруг электрона?

2. Как можно обнаружить электрическое поле вблизи заряженного тела?

1. Существует ли электрическое поле возле заряженной стеклянной палочки? Какой заряд будет иметь шарик и листочки электроскопа при поднесении к ним этой палочки?

2. Как доказать, что электрическое поле материально?

1. Можно ли объяснить электризацию тел перемещением атомов и молекул? Почему?

2. Если заряженной эбонитовой палочкой коснуться руки человека, то утратит ли палочка весь имеющийся на ней заряд? А если коснуться руки заряженной медной палочкой?

1. Почему стрелка электроскопа отклоняется, если к нему поднести заряженный предмет, не прикасаясь к электроскопу?

2. Если к заряженному электроскопу поднести горящую спичку, он довольно быстро разрядится. Объясните этот опыт.

III. Изучение нового материала

Согласно электронной теории, в телах имеются свободные электроны, движением которых объясняются различные электрические явления. Эти электроны совершают хаотическое движение, подобное движению молекул газа.

Демонстрация 1. Зарядим один электрометр, добиваясь максимального отклонения стрелки. Соединим проводником с другим электрометром. Наблюдаем уменьшение показаний первого и увеличение показаний второго электрометра.

Объяснение. Под действием электрического поля электроны проводимости перемещаются по проводнику.

Электроны проводимости, совершая орбитальное движение вокруг ядер (ионов), движутся еще и под действием электрического поля в направлении против поля. Направленное движение электронов проводимости в металлических проводниках под действием поля называют электрическим током. В других проводниках (электролитах, газах) под действием поля могут двигаться любые заряженные частицы — ионы, электроны.

— Почему ток был кратковременным? (Ослабело электрическое поле, при этом прекратилось движение заряженных частиц.)

Читайте так же:
Автоматический выключатель авм 1000

Для существования электрического тока необходимы следующие условия:

• наличие свободных электронов в проводнике;

• наличие внешнего электрического поля для проводника.

Электрический ток прекращается, если электрическое поле, создающее движение зарядов, исчезает. Чтобы электрический ток в проводнике существовал длительное время, необходимо все это время поддерживать в нем электрическое поле.

Электрическое поле в проводниках создается и может длительное время поддерживаться источниками электрического тока. Источники тока бывают различными, но во всяком из них совершается работа по разделению положительно и отрицательно заряженных частиц. Работа эта совершается так называемыми сторонними силами. Такие силы не могут иметь электрическое происхождение. В источниках тока в процессе работы по разделению заряженных частиц происходит превращение механической, внутренней или какой-нибудь другой энергии в электрическую.

В источниках тока за счет сил неэлектрического происхождения происходит разделение заряженных частиц, в результате чего полюса источника оказываются заряженными разноименно.

(Учитель проводит демонстрации опытов.)

Демонстрация 2. Получение тока в электрофорной машине. В электрофорной машине в электрическую энергию превращается механическая энергия.

Демонстрация 3. Получение тока с помощью термоэлемента. Можно осуществить и превращение внутренней энергии в электрическую. Если две проволоки, изготовленные из разных металлов, спаять, а затем нагреть место спая, то в проволоках возникнет электрический ток. Такой источник тока называется термоэлементом.

Демонстрация 4. Получение тока с помощью фотоэлемента. При освещении некоторых веществ световая энергия непосредственно превращается в электрическую энергию — это явление фотоэффекта. На нем основано устройство и действие фотоэлементов.

Демонстрация 5. Отклонение стрелки амперметра при подключении его к различным гальваническим элементам.

Источники тока, у которых разделение зарядов происходит за счет энергии химических процессов, получили название гальванических. Такое название было предложено итальянским ученым Алессандро Вольта в 1796 г. в честь ученого Луиджи Гальвани.

(При отсутствии оборудования учитель демонстрирует учащимся анимационные ролики 71 “Элемент Вольта” и 72 “Сухой гальванический элемент” из электронного приложения к учебнику.)

Рассмотрим принцип действия аккумулятора. При прохождении тока между пластинами и кислотой происходит химическая реакция. Следует подчеркнуть, что аккумулятор перед работой нужно зарядить, т. е. пропустить через него ток. Только после этой процедуры он становится источником тока.

(Учитель демонстрирует учащимся анимационный ролик 73 “Аккумулятор” из электронного приложения к учебнику.)

Демонстрация 6. Получение электрического тока с помощью фруктов или овощей. К клеммам гальванометра демонстрационного амперметра присоединим медные провода. К концу одного из них прикрепим исследуемый провод или гвоздь. Воткнем медный провод и гвоздь в картофелину или лимон — стрелка гальванометра отклонится.

— Почему? (Раствор минеральных солей, содержащихся в картофеле и лимоне, и разнородные проволоки образуют гальванический элемент.)

IV. Закрепление изученного материала

(Учитель проводит опрос-беседу.)

— Как можно получить электрический ток в металлическом проводнике?

— Что происходит в источниках тока?

— Что является положительным и отрицательным полюсами источника тока?

— Какие источники тока вы знаете?

— Возникает ли электрический ток при заземлении заряженного металлического шарика?

— Движутся ли заряженные частицы в проводнике, когда по нему идет ток?

— Если к шарам разноименно заряженных электроскопов одновременно прикоснуться металлическим стержнем, то в них возникает электрический ток. Чем эта установка принципиально отличается от устройств, которые принято называть источниками тока?

(Ученики оценивают свою работу на уроке и качество усвоения материала по методу “Бассейн”.)

Каждый ученик с помощью магнита указывает свою фамилию на нарисованном на ватмане бассейне. Названия уровней бассейна:

1. Утонул в непонимании вначале.

2. Захлебнулся в середине дистанции.

3. Доплыл до финиша, но очень устал.

4. Доплыл с уверенностью до финиша.

5. Установил личный рекорд.

1. § 32 учебника, вопросы к параграфу.

2. Сборник задач В.И. Лукашика, Е.В. Ивановой: № 1233, 1236, 1239, 1241.

3. Подготовить доклад (по желанию). Примерные темы докладов: “Применение аккумуляторов в быту”, “Применение аккумуляторов в технике”.

4. Выполнить задание на с. 99 учебника (по желанию).

Италия. Болонья. 1780 год. Профессор анатомии Луиджи Гальвани с двумя ассистентами препарируют лягушек. На столе в некотором отдалении стоит электрическая машина. Исследования по электричеству проводятся в научном мире весьма интенсивно. Уже описан электрический скат. Уже Б. Франклин извлек “электрический флюид” из туч с помощью воздушного змея, зарядил электроскоп и доказал идентичность атмосферного электричества тому, что образуется при натирании стекла. Еще не разделяют электрический заряд и электрический ток, но уже зреет мысль о единой природе всех видов электричества (до открытия электрона остается еще более 100 лет).

Один из ассистентов обращает внимание профессора: при касании скальпелем еще влажной мышцы она время от времени дергается, сокращается. Другой ассистент, работавший с электрической машиной, подметил, что мышца дергается всякий раз, когда в машине проскакивает электрическая искра.

Однажды влажные лапки лягушки были развешаны на медных крючках на железной решетке, окружавшей висящий садик дома Гальвани. Ясная погода, легкий ветерок колышет влажные лапки. Ни молний, ни заземления. А мышцы сокращались, когда касались свободным концом железной решетки! По слухам, это заметила супруга Гальвани, о чем и уведомила ученого криком.

Гальвани понял: электричество в атмосфере не было главным; все дело во влажной мышце и в металлах. И опыты продолжались на столе в лаборатории. Перебрав множество металлов, Гальвани выяснил, что наиболее сильные сокращения мышц происходят при контакте мышцы с медью и серебром.

Но здесь мысль Гальвани пошла по ложному пути: “Я полагаю с достаточным основанием заключить, что животным присуще электричество”.

Алессандро Вольта, профессор физики из Павии (Италия), с недоверием относился к “животному” электричеству. “. Что хорошего можно сделать с вещами, не приведенными к степени и мере, особенно в физике? Как можно определить причину, если не определить не только качество, но и количество, и интенсивность явлений?”

Итак, нужно измерять, оценивать интенсивность явления. Главная мысль Вольты: мышца лягушки не источник электричества, а всего лишь весьма чувствительный прибор для регистрации тока. А источником являются металлы — медь и серебро. Вольта заменяет лапку лягушки другим измерителем тока — собственным языком! При протекании тока язык ощущает кислый привкус, это Вольта установил из опытов с электрической машиной. Чем больше ток, тем сильнее ощущение кислоты.

Четыре года Вольта исследует различные пары металлов, добиваясь наибольшего эффекта. Позднее язык он заменил специальным электроскопом. Вот он, простейший и первый источник тока, созданный Вольтой! Но эффект слаб. Как его усилить? Казалось бы, что проще: соединить такие пары металлов последовательно, да побольше, подобно тому, как в карету впрягают несколько лошадей. Не тут-то было! Контакты металлов оказываются при этом обращенными и компенсируют действие друг друга. Вольта догадался разделить пары влажными кусочками ткани, играющими роль проводов.

А что же лапка лягушки — только измеритель тока? Позже ученые обнаружили, что если два металла (медь и цинк) опустить в раствор кислоты, то получается источник тока более мощный, чем вольтов столб! В этом источнике играет роль не столько контакт металлов, сколько контакт каждого из металлов с раствором кислоты. И это уже совсем другой источник тока, чем вольтов, и более сильный!

Читайте так же:
Защита от неполнофазного режима выключателя

Так что напрасно Вольта решительно отказался от изучения роли мышцы. Содержащаяся в мышцах влага с растворенными солями, кислотами, щелочами указывала путь к еще одному источнику тока, который в честь Гальвани назвали гальваническим элементом.

Наука получила в свое распоряжение источник тока в 1799 г., о чем Вольта уведомил Королевское общество: “Мне удалось сделать два таких цилиндра из двух металлических пар, они мне служат хорошо уже несколько недель и, надо думать, послужат еще несколько месяцев.

Искренне Ваш А. Вольта”.

Библиотека образовательных материалов для студентов, учителей, учеников и их родителей.

Наш сайт не претендует на авторство размещенных материалов. Мы только конвертируем в удобный формат материалы из сети Интернет, которые находятся в открытом доступе и присланные нашими посетителями.

Если вы являетесь обладателем авторского права на любой размещенный у нас материал и намерены удалить его или получить ссылки на место коммерческого размещения материалов, обратитесь для согласования к администратору сайта.

Разрешается копировать материалы с обязательной гипертекстовой ссылкой на сайт, будьте благодарными мы затратили много усилий чтобы привести информацию в удобный вид.

Параметры электрического тока и источники электроопасности

Основными параметрами электрического тока являются час­тота электрического тока f (Гц), электрическое напряжение в се­ти U(В), сила электрического тока I (А). С точки зрения элек­тробезопасности важное значение имеет тип электрической сети. В настоящее время наиболее распространены следующие типы электрических сетей:

• четырехпроводные электрические сети с глухозаземленной нейтральной точкой (рис. 2.21). Три провода сети являют­ся фазными проводами, а один — нейтральный рабочий провод. Нейтральная точка сети и рабочий нейтральный провод имеют соединение с землей (заземлены). Напряже­ние между любыми двумя фазными проводами равно ли­нейному напряжению Uл, а между любым фазным и ней­тральным проводами — фазному Uф. Линейное и фазное напряжение связаны соотношением Uл = Uф. Например, в сети напряжением 380/220В линейное напряжение 380В, а фазное 220В. Четырехпроводная сеть с заземлен­ной нейтралью наиболее распространена как в промыш­ленности, так и в бытовых электрических сетях;

• трехпроводные электрические сети с изолированной нейт­ралью (рис. 2.22). В этих сетях имеется три фазных провода, отсутствует нулевой рабочий провод, а нейтральная точка изолирована от земли. Эти сети нашли менее широ­кое распространение и используются в промышленности и технике для электроснабжения специальных технических устройств и технологических процессов;

• однофазные электрические сети.

Рис. 2.21.Четырехпроводная сеть Рис.2.22. Трехпроводная сеть с изо­лированной

с глухозаземленной нейтралью: А, В, С — нейтралью: А, В, С — фазные провода;

фазные провода; PEN — ней­тральный r и С — электриче­ские сопротивления

рабочий провод и емкости со­ответствующих фаз

Электрический ток подразделяется на постоянный и непосто­янный (переменный). Токи промышленной частоты имеют частоту 50 Гц. Однако для питания ряда технических устройств, электро­инструмента применяются токи и более высоких частот, напри­мер 400 Гц.

По напряжению электрический ток подразделяется на низко­вольтный и высоковольтный. Высоковольтным считается напря­жение свыше 1000 В.

Источники электрической опасности. Электрический ток ши­роко используется в промышленности, технике, быту, на транс­порте. Устройства, машины, технологическое оборудование и приборы, использующие для своей работы электрический ток могут являться источниками опасности.

Поражение электрическим током может произойти при при­косновении к токоведущим частям, находящимся под напряже­нием, отключенным токоведущим частям, на которых остался заряд или появилось напряжение в результате случайного вклю­чения в сеть, к нетоковедущим частям, выполненным из прово­дящего электрический ток материала, после перехода на них на­пряжения с токоведущих частей.

Кроме того, возможно поражение человека электрическим током под воздействием напряжения шага при нахождении человека в зоне растекания тока на землю; электрической дугой, возникающей при коротких замыканиях; при приближении че­ловека к частям высоковольтных установок, находящимся под напряжением, на недопустимо малое расстояние.

Человек может оказаться под воздействием напряжения при­косновения и напряжения шага.

Растекание тока в грунте (основании) возникает при замыка­нии находящихся под напряжением частей электрических уста­новок и проводов на землю. Замыкание может произойти при повреждении изоляции и пробое фазы на корпус электроуста­новки, при обрыве и падении провода под напряжением на зем­лю и по другим причинам.

При растекании тока в грунте (основании) на поверхности земли (основания) формируется поле электрических потенциа­лов φ. Чем дальше от точки замыкания тока на землю, тем меньше электрический потенциал. Электрический потенциал в зоне расте­кания тока распределяется по гиперболическому закону (рис. 2.23):

где k— постоянная величина, определяемая в зависимости от электрического сопротивления грунта и величины стекающего тока замыкания; х — расстояние от точки замыкания до земли.

Рис.2.23. Растекание тока в основании

Зона растекания тока практически составляет 20 м. За преде­лами этой зоны величины электрических потенциалов незначи­тельны, и их можно принимать нулевыми.

Напряжение прикосновения — это разность электрических по­тенциалов между двумя точками тела человека, возникающая при его прикосновении к токоведущим частям, корпусу электро­установки или нетоковедущим частям, оказавшимся под напря­жением. На рис. 2.24 изображена схема формирования напряжения прикосновения, возникающего между рукой человека, прикоснувшегося к корпусу электроустановки, оказавшемуся поднапряжением, и его ногами. Напряжение прикосновение (Unp) равно разности потенциалов, под которыми находятся рука (φр) и ноги (φн) человека:

Рис.2.24. Схема формирования напряжения прикосновения

Потенциал руки (φр) равен потенциалу корпуса, а потенциал ног (φр) равен потенциалу земли, который зависит от удаленности человека от точки стекания тока в землю. Если корпус установки, оказавшейся под напряжением, изолирован от земли или человек находится на расстоянии более 20 м от точки стекания тока с кор­пуса в землю, то потенциал земли нулевой и напряжение прикос­новения фактически равно потенциалу корпуса. Если человек на­ходится взоне растекания тока, то чем дальше человек находится от точки стекания тока в землю, тем меньше потенциал земли, а следовательно, больше напряжение прикосновения, под которым находится человек. Если человек стоит рядом с точкой стекания тока, потенциал земли (потенциал ног) практически равен потен­циалу корпуса (потенциалу руки), и напряжение прикосновения равно нулю, т. е. человек находится в безопасности.

Напряжение шага возникает, когда человек находится в зоне растекания электрического тока восновании (земле). Схема фор­мирования напряжения шага показана на рис. 2.25. Как видно из рисунка, если ноги человека удалены на различное расстояние от точки стекания тока, которое, как правило, определяется разме­ром шага, то они будут находиться под различными потенциала­ми. В результате между ногами возникает напряжение шага, рав­ное разности потенциалов, под которыми находятся ноги. Чем дальше находится человек от точки замыкания тока на землю, тем более пологой является кривая растекания тока, и при одной и той же величине шага напряжение меньше.

Рис. 2.25. Схема формирования напряжения шага

Категорирование помещений по степени электрической опасно­сти. Помещения без повышенной опасности — это сухие, беспыль­ные помещения с нормальной температурой воздуха и с изоли­рующими (например, деревянными) полами, т. е. в которых от­сутствуют условия, свойственные помещениям с повышенной опасностью и особо опасными.

Читайте так же:
Как сделать выключатель за веревочку

Примером помещений без повышенной опасности могут служить обычные конторские помещения, инструментальные кладовые, лаборатории, а также некоторые производственные помещения, в том числе цеха приборных заводов, размещенные в сухих, беспыльных помещениях с изолирующими полами и нормальной температурой.

Помещения повышенной опасности характеризуются наличием одного из следующих пяти условий, создающих повышенную опасность:

• сырость, когда относительная влажность воздуха длитель­но превышает 70%; такие помещения называют сырыми;

• высокая температура, когда температура воздуха длительно (свыше суток) превышает +30 °С; такие помещения назы­ваются жаркими;

• токопроводящая пыль, когда по условиям производства в помещениях выделяется токопроводящая технологическая пыль (например, угольная, металлическая и т. п.) в таком количестве, что она оседает на проводах, проникает внутрь машин, аппаратов и т. п.; такие помещения называются пыльными с токопроводящей пылью;

• токопроводящие полы — металлические, земляные, желе­зобетонные, кирпичные и т. п.;

• возможность одновременного прикосновения человека к имеющим соединение с землей металлоконструкциям зда­ний, технологическим аппаратам, механизмам и т. п., с од­ной стороны, и к металлическим корпусам электрообору­дования — с другой.

Примером помещения с повышенной опасностью могут слу­жить лестничные клетки различных зданий с проводящими по­лами, складские неотапливаемые помещения (даже если они размещены в зданиях с изолирующими полами и деревянными стеллажами) и т. п.

Помещения особо опасные характеризуются наличием одного из следующих трех условий, создающих особую опасность:

• особая сырость, когда относительная влажность воздуха близка к 100 % (стены, пол и предметы, находящиеся в помещении, покрыты влагой); такие помещения называ­ются особо сырыми;

• химически активная или органическая среда, т. е. поме­щения, в которых постоянно или в течение длительного времени содержатся агрессивные пары, газы, жидкости, образующие отложения или плесень, действующие разру­шающие на изоляцию и токоведущие части электрообору­дования; такие помещения называются помещениями с химически активной или органической средой;

• одновременное наличие двух и более условий, свойствен­ных помещениям с повышенной опасностью.

Особо опасными помещениями является большая часть про­изводственных помещений, в том числе все цехи машинострои­тельных заводов, испытательные станции, гальванические цехи, мастерские и т. п. К таким же помещениям относятся и участки работ на земле под открытым небом или под навесом.

Электрический ток, источники электрического тока: определение и сущность

Из курса физики все знают, что под электрическим током подразумевают направленное упорядоченное движение частиц, несущих заряд. Для его получения в проводнике образовывают электрическое поле. То же необходимо для того, чтобы продолжал существовать длительное время электрический ток.

Источники электрического тока могут быть:

  • статическими;
  • химическими;
  • механическими;
  • полупроводниковыми.

электрический ток источники электрического тока

В каждом из них выполняется работа, где разделяются разнозаряженные частицы, то есть создается электрическое поле источника тока. Разделившись, они накапливаются на полюсах, в местах подсоединения проводников. Когда полюсы соединяются проводником, частицы с зарядом начинают движение, и образуется электрический ток.

Источники электрического тока: изобретение электромашины

До середины семнадцатого века для получения электрического тока требовалось немало усилий. В то же время росло число ученых, занимающихся этим вопросом. И вот Отто фон Герике изобрел первую в мире электрическую машину. В одном из экспериментов с серой она, расплавленная внутри полого шара из стекла, затвердела и разбила стекло. Герике укрепил шар так, чтобы его можно было крутить. Вращая его и прижимая кусок кожи, он получал искру. Это трение заметно облегчило кратковременное получение электричества. Но более трудные задачи удалось решить лишь при дальнейшем развитии науки.

Проблема состояла в том, что заряды Герике быстро пропадали. Для увеличения длительности заряда тела помещали в закрытые сосуды (стеклянные бутылки), а электризуемым материалом выступала вода с гвоздем. Эксперимент оптимизировали, когда бутылку с обеих сторон покрывали проводящим материалом (листами фольги, например). В результате поняли, что можно было обойтись и без воды.

Лягушачьи лапки как источник тока

Другой способ получения электричества впервые открыл Луиджи Гальвани. Будучи биологом, он работал в лаборатории, где экспериментировали с электричеством. Он видел, как у мертвой лягушки сокращалась лапка при ее возбуждении искрой от машины. Но однажды тот же самый эффект был достигнут случайно, когда ученый дотронулся до нее стальным скальпелем.

Он стал искать причины, откуда появился электрический ток. Источники электрического тока, по его финальному заключению, находились в тканях лягушки.

Другой итальянец, Алессандро Вольто, доказал несостоятельность «лягушачьей» природы возникновения тока. Было замечено, что самый большой ток возникал при добавлении меди и цинка в раствор серной кислоты. Такая комбинация получила название гальванического или химического элемента.

Но использование такого средства для получения ЭДС стало бы слишком затратным. Поэтому ученые работали над другим, механическим, способом добычи электрической энергии.

Как устроен обычный генератор?

В начале девятнадцатого века Г.Х. Эрстед обнаружил, что при прохождении тока через проводник возникало поле магнитного происхождения. А чуть позже Фарадей открыл, что при пересечении силовых линий этого поля в проводник наводится ЭДС, которая вызывает ток. ЭДС меняется в зависимости от скорости движения и самих проводников, а также от напряженности поля. При пересечении ста миллионов силовых линий за секунду наведенная ЭДС становилась равной одному Вольту. Понятно, что ручное проведение в магнитном поле не способно дать большой электрический ток. Источники электрического тока этого вида намного более эффективно показали себя с намоткой провода на большую катушку или производства ее в форме барабана. Катушку насаживали на вал между магнитом и вращаемой водой или паром. Такой механический источник тока присущ обычным генераторам.

Великий Тесла

электрическая цепь состоит из источника тока

Гениальный ученый из Сербии Никола Тесла, посвятив свою жизнь электричеству, сделал много открытий, которые мы используем и сегодня. Многофазные электрические машины, асинхронные электрические моторы, передача энергии через многофазный переменный ток — это далеко не весь перечень изобретений великого ученого.

Многие уверены, что явление в Сибири, получившее название Тунгусский метеорит, на самом деле вызвал именно Тесла. Но, наверное, одним из самых загадочных изобретений является трансформатор, способный получать напряжение до пятнадцати миллионов вольт. Необычным является как его устройство, так и неподдающиеся известным законам расчеты. Но в те времена начали развивать вакуумную технику, в которой не было неясностей. Поэтому об изобретении ученого на время забыли.

Но сегодня, с появлением теоретической физики, к его работам снова возобновился интерес. Эфир признали газом, на который распространяются все законы газовой механики. Именно оттуда черпал энергию великий Тесла. Стоит отметить, что эфирная теория была очень распространена в прошлом среди многих ученых. Лишь с возникновением СТО — специальной теории относительности Эйнштейна, в которой он опровергал существование эфира, — о нем забыли, хотя сформулированная позже общая теория не оспаривала его как такового.

Но пока остановимся подробнее на электрическом токе и устройствах, которые повсеместно распространены сегодня.

Читайте так же:
Вывод силовой автоматического выключателя

Развитие технических устройств — источников тока

электрическая цепь состоит из источника тока батареи

Такие приборы служат для преобразования разной энергии в электрическую. Несмотря на то что физические и химические способы получения электрической энергии были открыты давно, повсеместное распространение они получили лишь со второй половины двадцатого века, когда стала бурно развиваться радиоэлектроника. Первоначальные пять гальванических пар пополнились еще 25 типами. А теоретически гальванических пар может насчитываться несколько тысяч, так как свободная энергия может быть реализована на любом окислителе и восстановителе.

Физические источники тока

Физические источники тока стали развиваться чуть позже. Современная техника предъявляла все более жесткие требования, и промышленные термо- и термоэмиссионные генераторы с успехом справлялись с возраставшими задачами. Физические источники тока — это устройства, где тепловая, электромагнитная, механическая и энергия радиационного излучения и ядерного распада преобразуется в электрическую. Кроме вышеназванных, к ним также причисляют электромашинные, МГД генераторы, а также служащие для преобразования солнечного излучения и атомного распада.

Чтобы электрический ток в проводнике не исчезал, нужен внешний источник для поддержания разности потенциалов на концах проводника. Для этого служат источники энергии, у которых имеется некоторая электродвижущая сила для создания и поддержания разности потенциалов. ЭДС источника электрического тока измеряется работой, выполняемой при переносе плюсового заряда по всей замкнутой цепи.

Сопротивление внутри источника тока количественно характеризует его, определяя величину потерь энергии при прохождении через источник.

Мощность и коэффициент полезного действия равны отношению напряжения во внешней электрической цепи к ЭДС.

в цепь включены источник тока ключ электрическая

Химические источники тока

Химический источник тока в электрической цепи ЭДС является устройством, где энергия химических реакций преобразуется в электрическую.

В его основу входят два электрода: отрицательно заряженный восстановитель и положительно заряженный окислитель, которые контактируют с электролитом. Между электродами возникает разность потенциалов, ЭДС.

В современных устройствах часто используются:

  • в качестве восстановителя — свинец, кадмий, цинк и другие;
  • окислителя — гидроксид никеля, оксид свинца, марганца и другие;
  • электролита — растворы из кислот, щелочей или солей.

Широко используют сухие элементы из цинка и марганца. Берется сосуд из цинка (обладающий отрицательным электродом). Внутри помещают положительный электрод со смесью диоксида марганца с угольным или графитовым порошком, которым сокращают сопротивление. Электролитом выступает паста из нашатыря, крахмала и других составляющих.

Кислотный свинцовый аккумулятор — это чаще всего вторичный химический источник тока в электрической цепи, обладающий высокой мощностью, стабильно работающий и имеющий невысокую стоимость. Аккумуляторы подобного вида используются в самых разных областях. Их часто предпочитают за стартерные батареи, которые особенно ценны для автомобилей, где они вообще являются монополистами.

Другой распространенный аккумулятор состоит из железа (анода), гидрата оксида никеля (катода) и электролита — водного раствора калия или натрия. Активный материал располагают в стальных никелированных трубках.

Применение этого вида снизилось после пожара на заводе Эдисона в 1914 году. Однако, если сравнивать характеристики первого и второго вида аккумуляторов, то окажется, что эксплуатация железо-никелевого может быть в разы дольше свинцово-кислотного.

Генераторы постоянного и переменного тока

Генераторами называются устройства, которые направлены на преобразование механической энергии в электрическую.

Самый простой генератор постоянного тока можно представить в виде рамки из проводника, которую поместили между магнитными полюсами, а концы подсоединили к изолированным полукольцам (коллектору). Чтобы устройство работало, необходимо обеспечить вращение рамки с коллектором. Тогда в ней будет индуцироваться электрический ток, изменяющий свое направление под воздействием магнитных силовых линий. Во внешнюю цепь он будет идти в единственном направлении. Получается, что коллектор будет выпрямлять переменный ток, который вырабатывается рамкой. Для достижения постоянного тока коллектор изготавливают из тридцати шести и более пластин, а проводник состоит из множества рамок в виде обмотки якоря.

Рассмотрим, каково назначение источника тока в электрической цепи. Узнаем, какие еще источники тока существуют.

Электрическая цепь: электрический ток, сила тока, источник тока

какие источники электрического тока

Электрическая цепь состоит из источника тока, который вместе с другими объектами создает путь для тока. А понятия ЭДС, тока и напряжения раскрывают протекающие при этом электромагнитные процессы.

Самая простая электрическая цепь состоит из источника тока (батареи, гальванического элемента, генератора и так далее), энергопотребителей (электронагревательных приборов, электрических двигателей и другого), а также проводов, соединяющих зажимы источника напряжения и потребителя.

Электрическая цепь имеет внутреннюю (источник электроэнергии) и внешнюю (провода, выключатели и рубильники, приборы для измерения) части.

Она будет работать и иметь положительное значение только в том случае, если обеспечена замкнутая цепь. Любой разрыв становится причиной прекращения протекания тока.

Электрическая цепь состоит из источника тока в виде гальванических элементов, электроаккумуляторов, электромеханических и термоэлектрических генераторов, фотоэлементов и так далее.

В качестве электрических приемников выступают электрические двигатели, которые преобразовывают энергию в механическую, осветительные и нагревательные приборы, установки электролизные и так далее.

Вспомогательным оборудованием являются аппараты, служащие для включения и выключения, измерительные приборы и защитные механизмы.

Все компоненты делятся на:

  • активные (где электрическая цепь состоит из источника тока ЭДС, электрических двигателей, аккумуляторов и так далее);
  • пассивные (к которым относятся электрические приемники и соединительная проводка).

Цепь может быть также:

  • линейной, где сопротивление элемента всегда характеризуется прямой линией;
  • нелинейной, где сопротивление зависит от напряжения или тока.

Вот простейшая схема, где в цепь включены источник тока, ключ, электрическая лампа, реостат.

источник тока в электрической цепи

Несмотря на повсеместное широкое распространение подобных технических устройств, особенно в последнее время люди все больше задаются вопросами об установке альтернативных источников энергии.

Разнообразие источников электрической энергии

Какие источники электрического тока еще существуют? Это далеко не только солнце, ветер, земля и приливы. Они уже стали так называемыми официальными альтернативными источниками электроэнергии.

эдс источника электрического тока

Надо сказать, что альтернативных источников существует целое множество. Они не распространены, потому что пока не являются практичными и удобными. Но, кто знает, может быть, будущее будет как раз за ними.

Итак, электрическую энергию возможно получать из соленой воды. В Норвегии уже создана электростанция, применяющая эту технологию.

Электрические станции могут работать также на топливных элементах с твердооксидным электролитом.

Известны пьезоэлектрические генераторы, получающие энергию благодаря кинетической энергии (уже существуют с такой технологией пешеходные дорожки, лежачие полицейские, турникеты и даже танцполы).

Есть и наногенераторы, которые направлены на преобразование энергии в самом теле человека в электрическую.

А что вы скажете о водорослях, которыми отапливают дома, футбольных мечах, генерирующих электрическую энергию, велосипедах, способных заряжать гаджеты, и даже мелко нарезанной бумаге, используемой в качестве источника тока?

Огромные перспективы, конечно, принадлежат освоению вулканической энергии.

Все это является реалиями сегодняшнего дня, над которыми трудятся ученые. Вполне возможно, что некоторые из них уже совсем скоро станут совершенно привычным явлением, подобно электричеству в домах сегодня.

А может, кто-нибудь раскроет секреты ученого Николы Тесла, и человечество сможет легко получать электроэнергию из эфира?

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector