Ele-prof.ru

Электро отопление
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Защита от помех

Защита от помех

Что выбрать - фильтр или стабилизатор напряжения?

В чем главное отличие стабилизатора напряжения от сетевого фильтра, когда лучше подойдет первый, а когда — второй. Для каких бытовых приборов стабилизатор — как собаке пятая нога, а когда он совершенно необходим. Доступное разъяснение в нашей новой статье.

Подключая дорогостоящую электронику к сети, всегда рекомендуется задуматься о приобретении сетевого фильтра. Что же такое сетевой фильтр и как его правильно выбрать? Давайте рассмотрим эти вопросы подробнее.

Зачем нужен сетевой фильтр

Характеристика входного напряжения обычно пишется на этикетках электроприборов. К примеру, на блоке питания компьютера или на мониторе, на прочих электроприборах указывает значения 220-230 В с частотой 50 — 60 Герц. При этом, номинальное напряжение сети составляет 220 В с частотой в 50 Гц. Однако реальные параметры электрического питания отличаются от предусмотренных стандартами.

Поскольку к сети подключено большое количество потребителей, среди которых крупные, то любое подключение или отключение их от сети ведет к скачкам напряжения – как вверх, так и вниз. Такие всплески напряжения могут фиксироваться в пределах одной квартиры, например, когда вы включаете или выключаете определенные приборы или сразу несколько из них (к примеру, кондиционер или стиральную машину).

Всплески напряжения представляют собой короткие импульсы повышенного напряжения – резкое и непродолжительное скачки напряжения. Возникать такие импульсы, которые длятся до долей микросекунд, могут от ударов молний при неисправном заземлении потребителей и отсутствии системы уравнивания потенциалов.

Сетевые фильтры борются также с шумовыми помехам – так называют радиочастотные электромагнитные помехи, которые могут возникать из-за находящихся недалеко радиостанций или бытовых приборов со встроенными генераторами или коллекторными двигателями (миксеры, трансиверы, ресиверы, пылесосы).

Чтобы не допустить повреждений электрооборудования из-за перепадов напряжения, рекомендуется устанавливать сетевые фильтры. Они как бы «сглаживают» все помехи сети. В таких фильтрах установлены специальные схемы, которые поглощают скачки напряжения. Если же помехи чрезмерные, тогда срабатывает предохранитель, которые отключит и сам фильтр и всю подключенную к нему технику.

Свойства сетевых фильтров

Во все фильтры встроена обычная компенсационная схема, однако она не одинакова во всех фильтрах, а имеет определенные отличия, которые и влияют на возможности аппарата и, следовательно, его стоимость. Рассмотрим основные отличия фильтров.

1. Количество розеток в сетевом фильтре. Чем больше розеток, тем больше приборов можно будет подключить к одному фильтру. Сегодня в фильтрах бывает от одной до восьми розеток. Однако нужно понимать, что при подключении к одному фильтру несколько приборов может привести к его отключению в случае перегрузки. Поэтому у фильтров есть такой параметр, как максимальная нагрузка, которая измеряется в кВт или же В•А.

2. Фильтры могут также защищать телефонную линию. В телефонной линии напряжение может постоянно меняться, поскольку нагрузка на общую телефонную сеть постоянно меняется. Поэтому в некоторых фильтрах установлена схема для сглаживания искажений, возникающих на телефонной линии, благодаря чему модем и факс работают без перебоев.

3. Помимо вышеуказанного, фильтры обладают способностью к фильтрованию помех, возникающих непосредственно в бытовой технике (например, внутри компьютера). Скачки напряжения также могут возникать в локальной компьютерной сети Ethernet, особенно если коммутаторы установлены в здании с нестабильным питанием.

4. Помимо того, в фильтрах предусмотрен максимальный поглощаемый импульсивный выброс (измеряется в джоулях, Дж). Чем больше данный параметр, тем более серьезные отклонения (как мы уже установили выше, импульс – это краткосрочное отклонение) могут компенсироваться фильтром.

5. Длина провода. Сетевой фильтр можно использовать в качестве удлинителя, поэтому длина провода имеет значение.

Виды сетевых фильтров

Внешний вид сетевых фильтров фактически одинаковый, однако уровень предоставляемой ними защиты разный. От данного уровня зависит тип электротехники, с которой может работать тот или иной вид фильтров.

Базовая защита (Essential). Это наиболее простой вид сетевых фильтров, но не стоит относиться к ним предвзято. Такие фильтры будут идеальными для недорогой, простой бытовой техники.

Продвинутая защита (Ноте/ Office). Оптимальный вид сетевых фильтров по соотношению цена/качество. Они идеально подходят для большинства домашних бытовых приборов.

Профессиональная защита (Performance). Такие фильтры необходимо устанавливать, если Вы пользуетесь дорогим электрооборудованием, которое особо чувствительно к электропитанию и малейшим перепадам в сети. К такому оборудованию относятся, на пример, домашние кинотеатры.

Естественно, лучшие характеристики у фильтров более высокого класса, ведь они могут поглощать импульсы более высоких энергий. Если у среднестатистического базового фильтра данная величина будет составлять около 960 Дж, то у профессионального фильтра – не менее 2500 джоулей. То есть, последние легко справляются с гораздо мощными помехами. Стоит помнить о том, что заявленные характеристики фильтра могут быть достигнуты только в том случае, если у розеток, к которым они подключены, имеется заземляющий проводник. Потому эффективность защиты в старых домах несколько снижается, поскольку в их сетях не предусмотрено заземление. Но это не значит, что фильтры будут совсем неэффективны.

Читайте так же:
Все фирмы производящие розетки

На что обратить внимание при выборе

1. Размер.
Это тот случай, когда размер имеет значение. К небольшим моделям стоит относиться с настороженностью. Внимательно изучайте документацию, которая приложена к устройству. В бумагах должны быть четко описаны защитные свойства модели, ее технические характеристики. Если все это описано в документации, а логотип бренда известен – тогда вероятности подделки стремится к нулю.

2. Величина поглощаемого импульса.
Перед тем как отправиться в магазин, точно определитесь, где будете использовать фильтр и сколько приборов будет к нему подключено. Так, для дома подойдут одни модели, для офиса – необходимы другие. При выборе устройства уделите внимание такому показателю, какую максимальную импульсную нагрузку можете выдержать устройство. Чем выше этот показатель, тем гораздо более высокое колебание напряжения способен поглотить фильтр. Отдельные модели легко переносят даже последствия, возникающие в сети от удара молнии.

3. Длина провода.
Не забываем о длине провода. Обычно, длина стандартного провода сетевого фильтра составляет 1,8 метра. Зачастую, этой длины достаточно для домашнего использования. Однако существует немало моделей с более длинным проводом – к примеру, до 5 метров. Такой фильтр идеален для больших помещений – домашних или офисных.

4. Наличие предохранителя.
При выборе фильтра уделяйте внимание предохранителю, поскольку это ключевой элемент любого устройства. Посмотрите, какой тип предохранителя используется в данном фильтре и сколько их всего там установлено. Так, отдельные производители устанавливают несколько предохранителей. В качестве основного используется плавкий, помимо оного предусмотрены тепловой и быстродействующий предохранители.

5. Индикатор работоспособности.
В некоторых случаях предусмотрен индикатор работоспособности устройства. Чаще всего это обычный светодиод, который светится, в том случае, когда фильтр включен в сеть и полностью исправлен. Если же какой-то защитный элемент фильтра неработоспособен, то светодиод автоматически отключается. Данная опция крайне важна, поскольку другой возможности проверить в домашних условиях работоспособен ли фильтр, нет.

6. Количество розеток.
Тщательно осмотрите розетки фильтра. В качественных, надежных фильтрах установлено 4-6 розеток. Помните только о том, что чем их больше, тем устройство будет дороже, но в любом случае лучше выбирать с запасом. Розетки должны быть евростандарта.

Варианты использования сетевых фильтров

Также выбор сетевого фильтра зависит и от того, какие устройства к нему будут подключаться, с какими приборами он будет работать. Рассмотрим различные варианты использования сетевых фильтров.

Для дома. Это устройство объединяет в себе небольшие размеры и хорошие технические возможности. Они с легкостью справляются с перепадами напряжения, которое в домашних условиях крайне редко достигает пиковых значений. Желательно, чтобы он имел несколько розеток.

Для офисов и мощных компьютеров. К сетевым фильтрам, которые используются в офисах, предъявляется несколько основных требований. Первое – это большое количество розеток. Второе – возможность справляться со значительными помехами и перепадами напряжения, возникающими в сети. На сетевых фильтрах для офиса лучше не экономить, ведь выход из строя техники из-за перепада напряжения может стать критическим для компании.

Для офиса подойдет сетевой фильтр модели APC SurgeArrest Essential с пятью розетками. Это устройство, кроме перепадов напряжения, эффективно справляется с помехами в телефонных кабелях, гарантируя, таким образом, надежную защиту для телефонов и факсов. Длина кабели у этого устройства 1,8 метра, потому он идеален для небольших помещений.

Для больших офисов используйте сетевые фильтры Pilot Pro. Длина кабеля у этих моделей достигает семи метром. Они оснащены пятью розетками евростандарта и одной универсальной, не имеющей кабеля заземления. В фильтрах этого типа имеется два предохранителя – термоплавкий и биметаллический. Максимальный уровень энергии, которую они способны поглотить составляет 400 джоулей. Несколько габаритный комплекс данного устройства не должен смущать – в большом офисном помещении это не критично.

Еще одна хорошая модель для больших офисов — Pilot X-Pro. Отличие состоит не только в форме, но и в технических показателях. Так, данная модель способна поглотить до 650 джоулей энергии, а потому такой сетевой фильтр достаточно эффективен для больших нагрузках на сеть.

В модели APC SurgeArrest PH6VT3-RS помимо шести розеток предусмотрены разъемы для факса, обычного и DSL-модема.

Читайте так же:
Розетка для реле schrack

Оригинальная форма сетевого фильтра Vector MAX не единственное его преимущество перед остальными. Шесть розеток в данном устройстве располагаются последовательно. Данная модель фильтра разработана для офисных компьютеров и прочей оргтехники. Фильтр хорошо справляется с помехами, защищает технику не только от коротких замыканий, а также от импульсов и высокочастотных помех.

Правила эксплуатации

Сетевые фильтры, как и прочие электрически приборы, необходимо правильно эксплуатировать, соблюдая технику безопасности. В первую очередь, сетевые фильтры нельзя подключать друг к другу – это категорически запрещено, поскольку может привести к увеличению показателей тока на фазе «земля». В сетевые фильтры нельзя включать электроприборы, имеющие высокие пусковые токи: к примеру, холодильники, пылесосы или кондиционеры. Это же относиться и к нагревательным приборам. Сетевой фильтр не желательно подключать к источникам бесперебойного питания, это может стать причиной выхода последнего из строя.

Подводим итог

Из всего вышеперечисленного можно сделать логичный вывод – сетевой фильтр полезен и необходим. Ремонт и замена испорченного от перепадов напряжения оборудования обойдется гораздо дороже, чем стоимость фильтра. В то же время, не нужно переоценивать возможности сетевых фильтров. Фильтры хорошо предохраняют оборудование от мгновенных скачков напряжения и ВЧ-помех, но не от полного отключения электроэнергии или его плавного изменения.

От полного отключения вас спасет качественный бесперебойник, а от недонапряжения или, наоборот, перенапряжения — хороший стабилизатор напряжения.

УЗИП и предохранители

Устройство защиты от импульсных перенапряжений TZG40/4-B AC 40kA

При попадании молнии в линию электросети происходит скачок напряжения. Если эта волна беспрепятственно дойдет до дорогостоящего прибора в вашем доме, то с большой вероятностью он, в лучшем случае, выйдет из строя, а в худшем вызовет пожар. Для того чтобы электроприборы в вашем доме не сгорели от скачка напряжения в электросети, стоит подумать о том, чтобы купить устройство защиты от импульсных помех (УЗИП). Такой прибор позволяет избежать негативных последствий от грозы, короткого замыкания или включения мощного генератора и других приборов. Чем больше УЗИП стоит на пути от источника напряжения к прибору, тем ниже вероятность возникновения аварийной ситуации.

Принцип работы

Ток идет по самому быстрому и легкому пути. В обычном состоянии УЗИП создает трудности для прохода напряжения 220 вольт. Ток из сети легко достигает пылесосов, телевизоров, лампочек и других приборов в доме в обход устройства защиты. Однако когда в линию электропередач попадает молния и ее заряд движется в сторону вашего дома, необходимо сделать так, чтобы отвести его излишки в другом направлении от драгоценного домашнего оборудования. Для этого УЗИП устанавливают на ответвление электрической цепи, которое заземляется. При повышении напряжения в сети устройство защиты от импульсных помех теряет сопротивление и току становится проще уйти через него в землю, чем бежать дальше по проводам к домашним приборам.

Как выбрать

Для того, чтобы купить устройство защиты от импульсных помех нужно понять в какой участок домашней цепи вы будете его встраивать. УЗИП делятся на три класса, которые отличаются друг от друга диапазонами напряжений, с которыми они способны работать.

Класс №1. Служит для установки на систему молниезащиты в самом первом щите, который стоит между общей сетью электроснабжения города и сетью объекта. Способен отводить ток силой 50 кА и импульсом 10/350 мкс.

Класс №2. Устанавливается, как правило, в распределительные щиты, установленные на этажах или обслуживающих группу помещений. Отводит ту оставшуюся часть импульса от попадания молнии, которую не смогло отвести УЗИП первого класса. Кроме того предохраняет от скачков, возникающих при запусках мощной электрической техники: насосов, бойлеров и т. д. Отводит ток силой до 5 кА и импульсом 8/20 мкс.

Класс №3. Вся энергия, которая могла дойти до приборов во время удара молнии, уходит в землю благодаря УЗИП первых двух классов. Однако возможны небольшие остатки этой волны, которые способны навредить цифровой технике. Для этого устройства защиты третьего класса ставят перед разводкой одной комнаты или непосредственно в розетки и удлинители.

Как видите, стоит купить устройства защиты от импульсных помех (УЗИП) всех классов сразу. Их количество будет зависеть о того, сколько у вас зданий, комнат и бытовых приборов на территории загородного участка.

Устройства защиты от импульсных перенапряжений

Одним из факторов, приводящих к повреждениям электрооборудования, являются атмосферные перенапряжения, связанные с ударами молний. Действия атмосферного электричества разделяются на:

  • прямые удары молний электрооборудование;
  • удары молний рядом с электрооборудованием, воздействующие на него при помощи мощного электромагнитного импульса;
  • удары молний вдали от потребителей, электромагнитная волна от которых воспринимается полупроводниковыми устройствами телемеханики и связи и создает помехи для их работы.
Читайте так же:
19008 набор заглушек для розеток

Воздействия атмосферных перенапряжений характерны небольшой длительностью импульса – порядка десятков миллисекунд. Но на это время напряжение в сети многократно повышается. Это приводит к пробоям изоляции и повреждениям как линий связи, так и питающихся от них потребителей.

Для защиты от перенапряжений, создаваемых грозовыми разрядами, используют устройства, ограничивающие амплитудное значение напряжения до уровня, безопасного для изоляции электрооборудования.

Искровые и вентильные разрядники, ОПН

Первыми устройствами, примененными для ограничения величин перенапряжений в сети, были искровые разрядники. Действие их основано на пробое воздушного промежутка фиксированной длины при определенном напряжении.

Разрядник подключается между защищаемыми фазами и контуром молниезащиты. Для каждой из фаз устанавливается персональный элемент. Он может выполняться открытым и состоять из расположенных торцами напротив друг друга металлических прутков. А может состоять из электродов, заключенных в изолирующую оболочку.

В момент возникновения грозового перенапряжения искровой промежуток разрядника пробивается, и мощность импульса уходит в землю через контур молниезащиты. За счет этого уровень напряжения ограничивается. По окончании импульса дуга гаснет, и разрядник снова готов к работе. В нормальном режиме он не потребляет тока и не оказывает влияния на режим работы электроустановки.

Вторым устройством, защищающим изоляцию от перенапряжений, были вентильные разрядники. Они состоят из двух элементов, соединенных последовательно: многократного искрового промежутка и гасящего резистора. При перенапряжении искровые промежутки пробиваются, через них и резистор протекает ток. В результате снижается напряжение в сети. Как только возмущающее воздействие снимается, дуга в искровых промежутках гаснет, и разрядник приходит в исходное положение.

Вентильные разрядники

Вентильные разрядники

Вентильные разрядники герметичны и работают бесшумно, в отличие от искровых, выделяющих в атмосферу продукты горения дуги.

Вентильные и искровые разрядники применяются только в электроустановках высокого напряжения.

Предыдущие защитные устройства заменяются ограничителями перенапряжений (ОПН).

Внутри ОПН находится варистор: резистор с нелинейной зависимостью сопротивления от приложенного к нему напряжения. При превышении порогового значения напряжения ток через варистор резко возрастает, предотвращая дальнейшее его повышение. При прекращении грозового или коммутационного импульса ОПН переходит в исходное состояние.

Ограничители перенапряжений

Ограничители перенапряжений

По сравнению с предыдущими устройствами ОПН надежнее и меньших габаритов. Их характеристики подбираются более точно, что позволило выработать гибкую стратегию их эффективного применения.

Внешний вид УЗИП

Внешний вид УЗИП

Модульные ОПН для сетей низкого напряжения получили название устройства защиты от импульсных перенапряжений (УЗИП).

Технические характеристики УЗИП

К ним относятся:

Технические характеристики УЗИП

Форма волны импульсного перенапряжения стандартизирована для случаев:

  • прямое попадание молнии – 10/350 мкс;
  • воздействие непрямого действия молнии – 8/20 мкс.

По назначению УЗИП по стандарту МЭК разделяются на типы 1-3, по ГОСТ Р 51992-2002 они разделяются на классы испытаний (I – III). Соответствие и назначение этих характеристик указано в таблице.

Типы по IEC 61643Классы по ГОСТ Р 51992-2002НазначениеМесто установки
1IДля ограничения перенапряжений от прямых ударов молнийНа вводе в здание, в главном распределительном щите
2IIДля ограничения перенапряжений от далеких ударов молний и коммутационных перенапряженийНа вводах, где не существует опасности прямых ударов
1+2I+IIОбъединяются характеристики типов УЗИП 1 и 2Как для типов 1 или 2
3IIIДля защиты чувствительных потребителей. Имеют самый низкий уровень защитного напряженияДля непосредственной установки у потребителей

По конструктивному исполнению УЗИП выпускаются с разным числом полюсов: от одного до четырех.

Выбор УЗИП

Для начала нужно определить степень воздействия молний или коммутационных перенапряжений на защищаемый объект. Для этого используются данные об интенсивности грозовых разрядов в месте установки, учитывается наличие устройств молниезащиты, линий электропередачи и их протяженность. Если ввод в дом выполнен кабельной линией, то она более защищена от прямых ударов молний, чем воздушная.

Электроустановка здания разделяется на зоны, защищаемые УЗИП соответствующих классов. Задача такого разделения: ступенчато снизить уровень перенапряжения так, чтобы более мощные устройства гасили основную волну перенапряжения, а по мере ее продвижения по распределительной сети устройства низшего класса дополнительно снижали ее воздействие, обеспечивая минимум в точке подключения потребителей.

Одновременно с этим безопасность электрооборудования обеспечивается выбором класса изоляции, соответствующего зоне защиты.

Распределение УЗИП по зонам защиты

Распределение УЗИП по зонам защиты

На вводе в здание устанавливаются УЗИП типов 1 или 1+2. Они выдерживают импульс от прямого удара молнии, снижая его до величины, допустимой для электрооборудования с классом изоляции IV (до 6 кВ). Точка установки УЗИП – во вводном щитке, ВРУ (вводном распределительном устройстве) или ГРЩ (главном распределительном щитке).

Читайте так же:
Какие розетки должны быть для детского сада

Класс изоляции электрооборудования, расположенного в этих распределительных устройствах после УЗИП, должен быть не хуже III (до 4 кВ).

Следующий рубеж защиты – распределительные щитки, подключенные к ВРУ или ГРЩ в глубине здания. На их входе устанавливаются УЗИП типа II, снижающие уровень перенапряжения до величины, приемлемой для электрооборудования с классом изоляции II (2.5 кВ). Так защищаются потребители, включающиеся непосредственно в розетки питания и устройства освещения.

При необходимости защиты электрооборудования, наиболее чувствительного к помехам (компьютерная техника, устройства связи), применяются УЗИП типа 3, устанавливающиеся в непосредственной близости от защищаемого объекта.

Требования к подключению УЗИП

При трехфазном питании и системе заземления TN-C к УЗИП подключаются все три фазы напряжения. В случае с системами TN-C-S или TN-S – к трем фазам добавляется нулевой рабочий проводник. Вывод «РЕ» соединяется с главной заземляющей шиной ВРУ или шиной РЕ распределительного щитка. Главная заземляющая шина соединяется с контуром заземления здания.

Пример подключения УЗИП

Пример подключения УЗИП

УЗИП защищается либо автоматическим выключателем ввода в здание (или вводным выключателем щитка), или персонально установленными предохранителями.

Источники бесперебойного питания — не защита от помех!

Типичной ошибкой подавляющего большинства пользователей является установка источника бесперебойного питания (ИБП) в качестве универсального помехозащитного устройства.

У маломощных ИБП единственным средством защиты от импульсных перенапряжений служит в большинстве случаев маленький фильтр, защищающий телевидение и связь от помех, возникающих при работе самого ИБП, и варистор.

В ИБП большой мощности защита от сетевых перенапряжений и помех обычно вообще не предусмотрена, иногда поставляется отдельно и стоит очень дорого. Зачастую в качестве защиты от помех поставщики ИБП предлагают THD- и RFI-фильтры, а также разделительные трансформаторы.

Содержание

Что такое THD- и RFI-фильтры, разделительные трансформаторы?

THD-фильтр (фильтр гармоник) защищает сеть электропитания от так называемых гармоник низшего порядка, искажающих сетевое напряжение при работе самого ИБП. Применяется в слабых электросетях, где включение мощного ИБП может буквально изрезать синусоиду сетевого напряжения. RFI-фильтр (фильтр радиопомех) защищает сеть электропитания от радиопомех, генерируемых высокочастотным инвертором самого ИБП. Применяется на объектах, критичных к уровню радиопомех (телецентр и т.п.).

Разделительный трансформатор служит преимущественно для обеспечения электробезопасности при работе бестрансформаторных ИБП. Любой обычный трансформатор по своему устройству является разделительным трансформатором (первичная и вторичная обмотки изолированы друг от друга). Если разряд молнии попал на вход трансформатора подстанции, то защитит ли трансформатор электронное оборудование от поражения? Ответ всем пострадавшим от молнии известен — нет! Обычный разделительный трансформатор не может быть устройством защиты от перенапряжений.

рис 1.jpg

Мощные ИБП топологии on-line имеют байпасы (обходные контуры), которые при перегрузках и в иных, опасных для «жизни» ИБП ситуациях, спасая их, соединяют защищаемое оборудование непосредственно с сетью электропитания, в обход ИБП. В последнее время для многих ИБП большой мощности питание нагрузки через байпас является приоритетным режимом, такое решение используется для повышения КПД ИБП (прим. редактора). При этом вся «грязь» из сети электропитания попадает на нагрузку.

рис 2.jpg

Отметим несколько типичных случаев поведения ИБП под воздействием помех из сети электропитания.

Примеры из практики

В центре Москвы у мощных ИБП самопроизвольного менялся уровень выходного напряжения и происходил переход на аккумуляторную батарею при номинальном входном напряжении. Причина — самопроизвольное перепрограммирование схемы управления ИБП под воздействием импульсных помех, возникающих при работе схем включения натриевых ламп для освещения улиц.

ИБП работал от сети электропитания с тиристорным электроприводом и переходил на аккумуляторную батарею при номинальном напряжении сети электропитания. Причина: периодические импульсные помехи, возникавшие вследствие работы в сети тиристорного преобразователя, приводили к срабатыванию датчика снижения напряжения ИБП (при этом коэффициент нелинейных искажений в сети электропитания не превышал допустимые для ИБП 5%). Необходимо отметить, что подобная ситуация возникала у наших заказчиков неоднократно, с ИБП разных производителей. Чем «умнее» контроллер ИБП, тем в большей степени он оказывается чувствителен к искажениям напряжения сети электропитания.

Локальная вычислительная сеть (ЛВС), получавшая электропитание по полнопроточной схеме от мощного ИБП, в дневное время работала удовлетворительно, а в ночное время неоднократно давала отказы в работе, в том числе сопровождавшиеся выходом из строя оборудования. Причина: сброс нагрузки в энергосистеме в ночное время сопровождался увеличением напряжения на 10. 15%, при этом ИБП, защищая свою силовую схему, переходил на байпас и оставлял ЛВС без защиты от помех и превышения напряжении питания. В крупных промышленных центрах при использовании мощных ИБП следует считаться с возможностью длительной работы нагрузки ИБП через байпас, то есть без надлежащей защиты СВТИ ЛВС от помех по сети электропитания.

Читайте так же:
Инструмент для сверления розеток

Разряд молнии в землю на удалении 200 метров от вычислительного центра в Иваново вывел из строя несколько десятков персональных компьютеров, мониторов и принтеров, защищенных ИБП. Характер повреждения — многочисленные пробои и повреждение компонентов, в блоках питания взорвались проводники печатных плат. При этом компьютеры бухгалтерии, защищенные трансфильтрами «ЭМСОТЕХ», сохранили работоспособность.

Пожар в магазине «Детский мир» и одновременное с ним самовозгорание защищенных с помощью ИБП компьютеров в Политехническом музее Москвы из-за перенапряжения в сети электропитания являются общеизвестными фактами.

На одном из крупных предприятий Санкт-Петербурга мощный ИБП воздействием перенапряжений был выведен из строя в первые недели эксплуатации, оставив без резервного электроснабжения большой ВЦ.

В здании РАО ЕЭС России произошла авария ИБП мощностью 30 кВА. Экспертиза повреждений, возникших в результате аварии, показала следующее: перенапряжение (наиболее вероятно — разряд молнии) привело к пробою каркаса дросселя по цепи «обмотка — магнитопровод» (каркас пластмассовый с электрической прочностью не менее 6 кВ). Искровым разрядом была повреждена изоляция проводников обмотки, что привело к возникновению межвиткового замыкания с последующим перегревом и разрушением дросселя и выходом из строя ИБП. Процесс повреждения изоляции перенапряжением и межвитковое замыкание были существенно разнесены во времени. Изоляция была повреждена в грозовой период, а межвитковое замыкание возникнуть позднее, в период интенсивной работы ИБП от аккумуляторной батареи.

На одном из крупных нефтеперерабатывающих заводов коммутационное импульсное перенапряжение возникло из-за однофазного короткого замыкания и привело к несанкционированному включению байпаса мощного ИБП, сбою в его работе, возрастанию до опасных пределов напряжения на конденсаторах инвертора и аварийной остановке ИБП на 10-15 секунд. Так как ИБП обеспечивал электроэнергией нагрузку по I особой категории, то ущерб от аварии был многомиллионным.

ИБП — это защита от исчезновения напряжения и провалов напряжения, на долю которых приходится не более 5. 10% всех сбоев в работе электронного оборудования, и которые обыкновенно не выводят электронику из строя. Основная доля сбоев в работе компьютеров и их повреждений (до 95%) приходится на незаметные невооруженным взглядом импульсные помехи.

Переоценка помехозащитных свойств ИБП может стоить дорого. В Тюмени разряд молнии вблизи от вычислительного центра вывел из строя около 100 компьютеров и их периферийное оборудование. Защита компьютеров обеспечивалась ИБП. Все ИБП (около 50 штук) вышли из строя, часть из них воспламенилась, несколько штук буквально взорвались с разрушением металлического корпуса.

Для сведения проектантов и знатоков электротехники

Промышленные ИБП (категория исполнения С3) западных производителей выдерживают по входу и выходу перенапряжения в соответствии с IEC 62040-2, табл. 6. Согласно этому стандарту ИБП по входу и выходу переменного тока может выдерживать без повреждений (сбои в работе допускаются) радиопомехи до 10 В с частотой 0,15-80 МГц; наносекундные импульсные помехи до 2 кВ; микросекундные импульсные перенапряжения (1/50 мкс, 8/20 мкс) до 1 кВ в цепи «провод-провод» и до 2 кВ в цепи «провод-земля». Причем испытания на микросекундные импульсные перенапряжения проводятся в отношении ИБП с током более 63 А.

Параметры имитатора для испытаний ИБП описаны в IEC 60950-1, табл. 1. Согласно этим нормам емкость конденсатора имитатора составляет 1 мкФ, а импеданс имитатора равен 40 Ом. То есть ток в цепи «провод-провод» ограничен значением 25 А, а в цепи «провод-земля» значением 50 А. Для целей грозозащиты следует ориентироваться на значения тока 20000 А и более. После сравнения этих значений не требуется доказывать тезис о необходимости защиты ИБП от перенапряжений.

рис 3.jpg

Насколько серьезной должна быть защита?

Конденсатор имитатора для испытаний ИБП по IEC 60950-1 емкостью 1 мкФ, заряженный до 1 кВ (цепь «провод-провод») и до 2 кВ (цепь «провод-земля») имеет энергию соответственно 0,5 Дж и 2 Дж. Импульс тока от разряда молнии 20 кА (10/350 мкс) имеет энергию около 100 000 Дж. То есть схема защиты от грозовых перенапряжений, установленная до ИБП, должна уменьшить энергию перенапряжения по цепи «провод-провод» в 200 000 раз и по цепи «провод-земля» в 50 000 раз.

Для того чтобы ИБП на протяжении всего срока эксплуатации исправно выполнял свою основную функцию — защищал нагрузку от чрезмерного снижения и исчезновения напряжения в сети электропитания, он должен быть надежно защищен по входу с помощью комплексных помехозащитных устройств.

Статья подготовлена специалистами ЗАО «ЭМСОТЕХ» и размещена на сайте с их любезного разрешения.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector