Ele-prof.ru

Электро отопление
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Роль и назначение нулевого провода

Роль и назначение нулевого провода

Назначение нулевого провода

Если кто-либо сталкивался с электричеством, то непременно слышал о таких понятиях, как фазный и нулевой провод. Их основной отличительной чертой является назначение. Провод, соединяющий нулевую точку фаз генератора, трансформатора с нулевой точкой нагрузки, называют нулевым или нейтральным. Его называют так потому, что в некоторых случаях ток в нем равен нулю, и нейтральным исходя из того, что он одинаково принадлежит любой из фаз.

Различия фазного и нулевого провода

Роль нулевого провода

Фазный провод (фаза) предназначен для подачи электричества к потребителю.

Назначение нулевого провода (нейтрального или нуля) состоит в выравнивании асимметрии напряжений при разном значении нагрузки в фазах.

Он присоединён к нулевым точкам источника и потребителя при их соединении в «звезду».

Присоединение нейтрального провода (трехфазная четырехпроводная сеть) является возможным только в том случае, когда источник и нагрузка соединены в «звезду».

При соединении в «треугольник» необходимость в нём отпадает, так как линейное и фазное напряжения в фазах одинаковы.

Чтобы понять разницу между линейным и фазным напряжением, необходимо понимать, что в трехфазной трехпроводной цепи линейное (напряжение между двумя фазными проводами) в основном составляет 380 В, а фазное — напряжение между фазой и нулем — в √3 раз меньше приблизительно 220 В.

Нулевой провод

Нейтральный провод заслужил свое название тем, что при работе устройств ток в нём, при одинаковой нагрузке трёх фаз, равен нулю. Сопротивление его невелико. Поэтому при перегрузке одной или нескольких фаз, ток в нем быстро возрастет. В схеме освещения его наличие является обязательным условием. В ином случае не гарантируется равномерность освещения.

В зависимости от роли, нулевой провод может быть рабочим, защитным, совмещенным.

Рабочий обозначается латинской буквой N и выполняется голубым цветом в европейских странах. В некоторых других странах цвет может быть серым либо белым.

Защитный обозначается РЕ. Он предназначен для безопасности в случае попадания потенциала на корпус электроприбора. В нормальном режиме он обесточен, а при поломке является проводником, который отведет от электроприбора опасный потенциал в землю. Цвет этой жилы желто-зеленый.

В некоторых системах нулевой провод совмещен с защитным. В таком случае маркировка будет обозначена как PEN и окраска этой жилы будет синей с полосками на концах желто-зеленого цвета.

Особенности нейтрального провода

Роль и назначение нулевого провода

Нулевой провод предотвращает нежелательные ситуации при аварийных режимах работы. Без его наличия в случае фазного короткого замыкания двух фаз напряжение в третьей фазе мгновенно возрастет в √3 раз. Это губительно скажется на оборудовании, которое питает этот источник. В случае наличия нуля в такой ситуации, напряжение не изменится.

При обрыве одной из фаз в трехфазной трехпроводной системе (без нуля), напряжение на двух оставшихся фазах уменьшится. Они окажутся соединенными последовательно, а при этом виде соединения напряжение распределяется между потребителями в зависимости от их сопротивления.

При обрыве одной из фаз в трехфазной четырёхпроводной системе, напряжение в двух оставшихся фазах своего значения не изменит.

Предохранители в нулевой провод не устанавливают из-за его большой значимости, потому как его обрыв является нежелательным

Так как большую часть времени работы электроустановок ток в этом проводе либо равен нулю, либо незначителен, нет смысла изготавливать его такого же сечения, как и сечение фазных. Чаще всего, из соображений экономии, он имеет меньшее сечение жилы, нежели сечение жил фаз в одной электроустановке. Если защитный провод не совмещен с нулевым, его сечение выполняют вдвое меньше, нежели, у фазного провода.

Классификация нейтралей линий электропередач

Назначение линий электропередач весьма разнообразно. А также разнообразна аппаратура для их защиты от утечек и коротких замыканий. В связи с этим нейтрали классифицируются на три вида:

  • глухозаземленная;
  • изолированная;
  • эффективно заземлённая.

Различия фазного и нулевого провода

Если линия электропередач напряжением от 0,38 кВ до 35 кВ имеет небольшую длину, а количество подключенных потребителей велико, то применяется глухозаземленная нейтраль. Потребители трехфазной нагрузки получают питание, благодаря трем фазам и нулю, а однофазной — одной из фаз и нулю.

При средней протяженности линий электропередач напряжением от 2 кВ до 35 кВ и небольшим количеством потребителей, подключенных к данной линии, находят применение изолированные нейтрали. Они широко используются для подключений трансформаторных подстанций в населённых пунктах, а также мощного электрооборудования в промышленности.

В сетях, с напряжением 110 кВ и выше, с большой протяженностью линий электропередач, применяется эффективно заземлённая нейтраль.

Реакция электроприборов на обрыв нуля

Если общий нейтральный провод в многоэтажном доме оборвется, то потребители ощутят это в результате скачка напряжения в их электроприборах.

Особенности нейтрального провода

Основные факторы, которые могут привести к обесточиванию общего нуля:

  • аварийная ситуация на подстанции;
  • устаревшая проводка;
  • монтаж проводки выполнялся не совсем качественно.

Классификация нейтралей линий электропередач

Та фаза, к которой подключено большее количество потребителей многоквартирного дома, будет перегружена. Напряжение в ней уменьшится. В той фазе, к которой потребителей подключено меньше всего, напряжение резко возрастет.

Это негативно скажется на приборах — снижение напряжения вызовет их неэффективную работу, а рост напряжения может повлечь за собой выход из строя тех, которые были подключены в данный момент. Чтобы обезопасить себя от такой ситуации, необходимо установить в щиток, питающий отдельную квартиру, индивидуальный ограничитель перенапряжения. Как только напряжение начнет превышать допустимые значения, ограничитель быстро отключит питание.

Если произойдет обрыв нуля непосредственно в квартире, то электричество пропадет полностью, но вместе с тем фаза не отключится. Опасность заключается в том, что она может перейти как раз на провод нулевой. И если какой-либо электроприбор был предварительно заземлён на него, корпус этого электроприбора будет под напряжением, а проще говоря, начнет «биться током».

Главными факторами, которые способствуют обрыву нуля непосредственно в квартире можно назвать:

  • ненадежность присоединения контактов;
  • неправильно выбранное сечение проводника;
  • устаревшая проводка.

Эти факторы приводят к чрезмерному нагреванию проводника. Из-за повышенной температуры окисляется место присоединения контактов, перегреваются жилы проводов. А это, в свою очередь, может привести к пожару.

Обрыв нуля в трехфазной и однофазной сети

Лампочка при обрыве нуля может гореть ярко, но недолго!

Читайте так же:
Стабилизатор напряжения тока 12в для светодиодов

Иногда обывателям приходится слышать эти страшные слова – “Обрыв нуля”. Для простого человека понятного мало, но связано это всегда с очень неприятными последствиями – поражение электрическим током, сгоревшая техника, и даже пожар в квартире.

В этой статье я подробно рассмотрю, что такое обрыв нуля, как он происходит, какие последствия от него могут быть. И конечно, будет рассмотрена защита от обрыва нуля в трехфазной и однофазной сети.

Для тех, кто не очень понимает, чем трехфазная сеть отличается от однофазной, очень рекомендую ознакомиться с этой статьёй.

Также, при изучении этой статьи важно знать о том, как формируются системы заземления.

Где бывает обрыв нуля

Принципиально важно, что обрыв нуля может быть в трехфазной, а может быть в однофазной сетях.

Там происходят совершенно разные процессы, подробно расскажу ниже. Если коротко, что при этом происходит:

При обрыве нуля в трехфазной сети появляется перекос фаз, что может привести к тому, что напряжение в квартирной розетке возрастёт до 380 В! Для человека, если правильно выполнено заземление, такая авария не опасна. А вот для наших электроприборов – последствия могут быть очень печальными! А также и для нашего жилища, поскольку может произойти пожар.

Местом обрыва нуля может быть этажный щиток, тогда в зоне риска находятся только квартиры на одной лестничной площадке. А может – вводное распределительное устройство (РУ) многоэтажного дома. Например, такое:

Вводное распределительное устройство (РУ) в подвале многоэтажного дома

Вводное распределительное устройство (РУ) в подвале многоэтажного дома – в плохом состоянии

При обрыве нуля в однофазной сети последствия не такие печальные – напряжение в розетке будет нулевым, и электроприборы просто не будут работать. Однако вся электросеть (а при неправильно выполненном заземлении, и корпуса электроприборов!) будет находиться под потенциалом 220 В!

Последствия обрыва нуля в трехфазной сети

Расскажу случаи из жизни.

  1. Электрики ремонтировали ввод в подъезд. И во время ремонта на несколько секунд был отключен рабочий ноль. Произошло очень неприятное: вернувшись домой вечером, люди обнаружили, что у них погорели телевизоры, холодильники, зарядки, и т.п. – то, что у нас постоянно включено в розетки. Хорошо, что ещё не произошел пожар.
  2. Пришёл по вызову, жалоба – плавает напряжение. Меряю напряжение (всё выключено) – почти 300 вольт. Затем при включении лампы накаливания напряжение падает до 70В… Оказалось, в этажном щитке выгорел болт, на который приходит ноль. Произошел обрыв нуля, перекос фаз, напряжения пошли вразнос. Заменил болт, восстановил контакт, напряжение нормализовалось.

Болт нуля

Болт нуля. Ржавый, периодически не контачит. Если его менять без отключения, 100% в подъезде погорит техника!

Отгорание нуля от нулевой шины

Отгорание нуля от нулевой шины

Нулевой провод отгорел от второго болта. Видно, как он отвалился под натяжением. Прежде, чем отвалиться, он ПОЧТИ переплавил изоляцию фазных проводов (вертикальные, красный и белый).

Сервер ещё не включали, возможно, интеллектуальный ущерб будет больше…

На месте этой трагедии я установил трехфазное реле напряжения Барьер, читайте статью по ссылке.

Как видно, такие проблемы происходят из-за неправильных действий “электриков” либо из-за самопроизвольного обрыва (отгорания) нулевого провода в старом жилом фонде.

В этой статье подробно расскажу, почему такое бывает и как с этим бороться.

Формирование однофазной и трехфазной сетей и обрыв нуля

Как известно, мощные потребители (в данном случае – многоквартирные дома) питаются от трехфазной сети, в которой есть три фазы и ноль. Про эту систему я уже писал подробно в статье про отличия трехфазного питания от однофазного, вот картинка оттуда:

Напряжения в трёхфазной системе

Рассмотрим этот вопрос ещё раз, только с другой стороны.

Вот как выглядит упрощенно схема подвода питания в этажный щиток:

Система питания, без обрыва нуля. Резисторами обозначены условно три квартиры.

Фазные провода L1, L2, L3, на которых присутствует напряжение 220В по отношению к нейтральному проводу N, обозначены красным цветом, поскольку они представляют опасность. Заземление РЕ показано внизу, его провод соединяется в распределительном устройстве на вводе в здание с нейтралью.

Подробнее – ещё раз призываю ознакомиться с моей статьёй про системы заземления, ссылка в начале.

К чему приводит отгорание нуля в трехфазной сети

Что изменится, если произойдёт обрыв нулевого провода N ДО места соединения нулевых проводов в одной точке? Будет обрыв нуля в трехфазной сети:

Обрыв нуля в трехфазной сети

Если смотреть по схеме, правее места обрыва напряжение теперь будет не нулевым, а “гулять” в произвольных пределах.

Что будет, если ноль отсоединить (случайно или намеренно)? Какие напряжения будут подаваться потребителям вместо 220В? Это как повезёт.

Картинка в другом виде, возможно, так будет легче понять:

Перекос фаз

Перекос фаз в результате обрыва нуля.

Потребители условно показаны в виде сопротивлений R1, R2, R3. Напряжения, указанные в предыдущем рисунке, как

220B, обозначены как

0…380B. Объясняю, почему.

Итак, что будет, если ноль пропадёт (крест в нижнем правом углу)? В идеальном случае, когда электрическое сопротивление всех потребителей одинаково, ничего вообще не изменится. То есть, перекоса фаз не будет. Так происходит в случае включения трехфазных потребителей, например, электродвигателей или мощных калориферов.

Но в реале так никогда не бывает. В одной квартире никого нет, и включен только телевизор в дежурном режиме и зарядка телефона. А соседи по площадке устроили стирку, включили сплит-систему и электрический чайник. И вот -БАХ!- отгорает ноль.

Начинается перекос фаз. А насколько он зверский, зависит от реальной ситуации.

У соседей, которые дома, чайник перестанет греть, стиралка и сплит потухнут, напряжение уменьшится до 50…100В. Поскольку “сопротивление” этих соседей гораздо ниже, чем тех у тех, которых нет дома. И вот, эти люди спокойно работают на работе, а в это время в пустой квартире у них дымятся телевизор и китайская зарядка. Потому, что напряжение в розетках подскочило до 300…350В.

Это реальные факты и цифры, такое иногда бывает, состояние электрических щитков на лестничных площадках часто бывает аварийным. Даже, когда в доме проводится капитальный ремонт, щитки не трогают, поскольку менять электрику гораздо сложнее, чем покрасить дом и вставить новые окна.

Расследовать такое возгорание надо не с вызова экстрасенсов (мало ли, полтергейст со спичками играется;) ), а с вызова электрика.

Обрыв нуля в однофазной сети

Тут картина будет следующей:

Обрыв нуля в однофазной сети

Для нагрузки, которая работает на других фазах, вообще ничего не изменится. Это всё равно, как если в своей квартире выключить вводные автоматы – соседям будет по барабану.

Но если обрыв произошел, например, в щитке, то вся квартира, в том числе и оборванный конец нулевого провода, окажется под напряжением 220В!

Обрыв (отгорание) бывает вот из-за таких ржавых болтов, как вверху этого фото:

плохой ноль

Плохой ноль. Пропадание нуля в квартире

Повторюсь – если заземление сделано правильно, либо его вообще нет – эта авария ничем не опасна. Ну и, конечно, не нужно трогать провода, не дожидаясь электрика – все они под смертельным потенциалом!

Хорошо, кто виноват – мы поняли. Что делать?

Как защититься от обрыва нуля?

Самая лучшая защита от обрыва нуля в трехфазной сети – это реле напряжения, о котором я писал на блоге не раз. Вот две мои основные статьи – Про реле напряжения Барьер и реле напряжения ЕвроАвтоматика ФиФ.

Из-за своей основной функции это реле называют также Реле обрыва нуля.

Другой вариант – применение стабилизатора напряжения. В нем обязательно должна быть защита от пониженного и повышенного (до 380В) входного напряжения. А при невозможности стабилизировать напряжение он должен отключать квартиру, но оставаться исправным.

Лучший вариант для защиты от обрыва нуля и вообще при нестабильном напряжении – использовать реле напряжения, а вслед за ним – стабилизатор.

Как вариант дополнительной защиты при обрыве нуля может помочь УЗО (или диф.автомат). Только не так всё просто, подробности – в видео:

На сегодня всё, подключайтесь к обсуждению, задавайте вопросы в комментариях!

Ноль бьет током — в чем причины

Почему ноль бьет током: причины, откуда напряжение на нуле

Удар током можно получить, касаясь сразу к двум оголённым проводникам, к фазе и нулю. Также, поражение электрическим током происходит в том случае, когда есть контакт с землей и фазой.

Птицы не получают удар током сидя высоко на фазе по той причине, что отсутствует второй проводник, ноль либо земля. Однако случаются и такие ситуации, когда в розетке оказывается сразу две фазы. Проверить это достаточно просто, если взять в руки индикаторную отвертку.

Скажем так, что проблема достаточно распространённая. Ноль может бить током даже в тех случаях, когда индикатор ничего не показывает. Достаточно стоять голыми ногами на полу или прикасаться рукой к стене и нулю, чтобы получить внушительный разряд током.

Почему ноль бьет током?

Почему так происходит? Откуда напряжение на нуле? В чем могут быть проблемы? Давайте разбираться.

Почему ноль бьет током?

Недавно со мной произошёл интересный случай. В общем, занимался я монтажом карнизной планки и случайно попал при бурении стен в провод, который питал светодиодный фонарь на улице.

Провод задел буром аккуратно, так, что не повредил сразу два провода, а только изоляцию. Когда подключил прожектор то, заметил, что светодиоды светятся даже в том случае, если выключатель отключён.

Почему ноль бьет током?

Правда, перед этим, когда я подсоединял фонарь, меня немного ударил ноль, хотя автоматические выключатели я соответственно отключал перед этим. К чему это я? Да все к тому, что первой причиной того, что ноль бьет током, это повреждение проводки и утечка потенциала на ноль.

В таком случае на индикаторе будет гореть лампочка, поскольку на ноль попадает фазное напряжение.

Кроме этой причины, ноль может бить током и вследствие:

  • Обрыва нейтрали;
  • Из-за неправильно подключённой электропроводки в щитке;
  • Вследствие нарушения изоляции.

Рассмотрим более подробно данные проблемы, из-за которых ноль может бить током.

Обрыв нуля

Обрыв нейтрали является самой опасной проблемой, которая может произойти. В таком случае опасный потенциал оказывается сразу на двух проводниках.

Обрыв нуля

Часто обрыв происходит вследствие отгорания нуля в квартире или щитке. Важно знать! Что для возникновения опасного напряжения на нуле в данном случае, достаточно чтобы в розетку был включён хоть один из потребителей.

Замыкание фазы на нуль

Часто происходит и так, что вследствие повреждения проводки и изоляции, фаза замыкается с нулём. Конечно же, в таком случае должен сработать автоматический выключатель.

Замыкание фазы на нуль

Однако при чрезмерной длине проводов и неправильно подобранном номинале автомата такое часто не происходит, что ведёт к возникновению других, не менее опасных проблем. Поэтому чаще всего это все-таки повреждение фазного провода в стене, через который ток уходит на ноль и тот начинает бить током.

Перекос фаз

Также данная проблема, так или иначе, может быть связана с перекосом фаз. Перекос фаз — это неравномерное распределение нагрузок между тремя фазами, в результате чего на нуле появляется так называемый «уравнительный ток».

Перекос фаз

В том случае, если электропроводка старая, то разница между потенциалами на нулевой клемме может достигать 30 Вольт и более, что вполне достаточно для неприятного удара электрическим током.

Ноль бьет током. Потенциал на PEN проводнике

почему ноль бьет током - откуда напряжение на нуле

Ноль бьет током — это значит, что PEN проводник, имеющий общую точку с нейтралью трансформатора и землей в определенных ситуациях может иметь потенциал, отличный от нуля.

Самая распространенная причина, из-за которой ноль бьет током — это обрыв (отгорание) нейтрали трансформатора. В этом случае на уже не связанном с нейтралью и землей PEN проводнике в зависимости от неравномерной нагрузки появляется фазное напряжение.

Также, отличный от нуля потенциал на нейтральном проводе имеется практически всегда при нормальном режиме работы. В пятипроводной системе электроснабжения напряжение между землей и нейтралью отсутствует только в точке соединения этих проводов. По мере удаления от этого места за счет сопротивления проводов разность потенциалов постепенно появляется и увеличивается. В данном обзоре будет подробно рассмотрено именно данная ситуация, когда ноль бьет током в штатном режиме работы системы электроснабжения.

Видео обзор — ноль бьет током

Ошибки при анализе нулевого потенциала PEN проводника

Поражение электрическим током возникает при соприкосновении с электрической цепью, в которой присутствуют источники напряжения и/или источники тока, способные вызвать протекание тока по попавшей под напряжение части тела. Обычно чувствительным для человека является пропускание тока силой более 1 мА.

Многие утверждают, что нейтральный проводник при нормальном режиме работы не бьет током. А в качестве объяснения используют следующие доводы:

  • Например, ток течет по пути наименьшего сопротивления.
  • Или якобы нейтраль соединена с землей с нулевым потенциалом и мы стоим на земле. Но все это поверхностно и неверно.

На поверхности земли электрический потенциал равен 0 вольт. Но нужно понимать, что данный нулевой потенциал — это условность, своего рода точка отсчета, о которую спотыкаются многие электрики, пытаясь объяснить процессы протекания электрического тока. Учитывая, что в сеть почти всегда включена нагрузка, а распределить ее по фазам равномерно нереально, между нулевым (PEN) проводником и землей всегда есть разность потенциалов, создаваемая сопротивлением проводника и переходных контактов. Соответственно дотронувшись до нулевого проводника и стоя на земле, вы замкнете цепь, и через вас пройдет ток.

Как распространяется ток в электрической цепи

Начнем разбирать данный вопрос с анализа утверждения, что ток течет по пути наименьшего сопротивления. Это не верно, так как в замкнутой цепи он (а точнее — свободные электроны) распределяется везде, только его сила обратно пропорциональна сопротивлению (если речь идет о смешанном соединении). Другое дело, когда на определенном участке нет вообще сопротивления, тогда весь ток пойдет через него. Это можно показать на схеме, но в реальности на воздушных линиях с большой протяженностью такое невозможно. Для наглядности рассмотрим подключение нагрузки к источнику однофазного тока:

почему ноль бьет током - откуда напряжение на нуле

К источнику питания подключена нагрузка (условно чайник) создающий сопротивление 30 Ом. Цепь замкнулась, и в ней образовался ток 7,3 Ампер. Прикоснувшись к нулевому проводу и стоя на земле, мы создали дополнительную цепь через тело, землю и заземлитель к источнику питания. На данном этапе уместно вспомнить землю с ее нулевым потенциалом. В данном случае она выступает просто как проводник, соединенный с нулевым выводом источника питания. Поэтому можно перестроить схему, заменив землю обычным проводником:

почему ноль бьет током - откуда напряжение на нуле

Как в первой, так и во второй схеме через участок человек — заземление — источник питания не проходит ток. Не удивительно, ведь на пути два резистора с сопротивлением 4 и 1000 Ом. Так почему же неверна трактовка движения по пути наименьшего сопротивления. Весь секрет кроется в проводах, которые имеют свое сопротивление. Электрическое сопротивление жилы самонесущего изолированного провода (СИП) сечением 25 мм² равно 1,380 Ом/км. К примеру, возьмем длину 250 метров. Тогда сопротивление провода в конце линии будет приблизительно 0,345 Ом. Добавим это сопротивление в нашу схему:

почему ноль бьет током - откуда напряжение на нуле

Теперь ток 2,5 мА пошел через человека. Произошло пропорциональное перераспределение тока в цепи. И земля здесь никак не спасает, а наоборот усугубляет. Ведь если бы не был заземлен вывод источника однофазного тока, то никакой разности потенциалов с землей и не было бы.

Для того чтобы понять, почему в цепи человек-земля (проводник)-заземлитель-источник питания появился ток и рассчитать его величину, нужно воспользоваться правилами последовательного, параллельного и смешанного соединения резисторов. Мы этого не будем делать, так как программа Electronics Workbench все посчитала за нас. Лучше простыми словами пройдемся по схеме и разберемся с потенциалами:

почему ноль бьет током - откуда напряжение на нуле

Оранжевый участок от источника питания до нагрузки имеет потенциал 217,5 Вольт. Это значение равно напряжению на входе в резистор с сопротивлением 30 Ом. Участок цепи, отмеченный желтым имеет потенциал 2,5 Вольта, что равно падению напряжения за счет резистора 30 Ом. Как и упоминалось выше, без сопротивления провода 0,345 Ом никакого потенциала на нулевом проводе бы не было. Данный резистор создал в цепи сопротивление, которое позволило распределиться току по двум участкам с силами обратно пропорциональными сопротивлениям этих участков:

  • Участок между человеком и заземлителем источника питания — это зона растекания (локальная земля).
  • Участок схемы, помеченный голубым цветом, имеет нулевой потенциал.

Мы рассмотрели подключение нагрузки к источнику однофазного тока с заземленным выводом. Как видно, при включенной нагрузке за счет сопротивления проводов всегда будет разность потенциалов между нулем и землей. И эта разность будет тем больше, чем больше сопротивление проводов и мощность включенной нагрузки. Так, увеличив мощность нагрузки в три раза, сила тока, проходящая через человека, возросла с 2,5 до 7,4 мА. При таком значении фиксируются судороги и болевые ощущения в руках.

Ноль бьет током в сетях трехфазного тока

Теперь перейдем к рассмотрению разности потенциалов между нейтральным проводом и землей в сетях трехфазного тока. Здесь уже имеются свои особенности. Так, если нагрузки по всем фазам будут одинаковы и не будет смещения нейтрали, то на нейтральном проводе ток будет равен нулю. То есть при соединении в звезду фаз симметричного приемника нейтральный провод не оказывает влияния на работу цепи и может быть исключен.

Отсутствие сопротивления в проводах и равномерное потребление в многоквартирном доме или на линии с одно-дух этажной застройкой — это что-то из области фантастики, поэтому нейтральный проводник необходим и его основная функция – это минимизация напряжение смещения нейтрали и искажений фазных напряжений приемников. Подробно на данных процессах останавливаться не будем, и рассмотрим их отдельной темой. А пока же перейдем к току в нейтральном проводе при несимметричном потреблении.

Как и в случае с источником однофазного тока, при добавлении в схему сопротивления проводников помимо смещения нейтрали открывается путь для протекания тока через землю при прикосновении человека к рабочему нулевому или защитному проводнику.

Кстати, во всех системах TN с зануленным электрооборудованием при нормальном режиме работы на проводящих корпусах есть потенциал. А для того, чтобы не было разности потенциалов и вас не било током при замыкании цепи через трубы и иные проводящие коммуникации выполняется система уравнивания потенциалов.

почему ноль бьет током - откуда напряжение на нуле

Вернемся к теме и для наглядности рассмотрим схему:

Как видно, с учетом неравномерной нагрузки (на схеме это резисторы 10, 30 и 50 Ом) и сопротивления проводов взятых условно 0,3 Ом потенциал на дальнем от распределительного трансформатора участке нейтрального провода 4,5 Вольта. Соответственно через человека с сопротивлением 1000 Ом, стоящего на земле и касающегося нейтрального провода, потечет ток с силой 4,5 мА.

Если мы увеличим сопротивление проводов в два раза, то и проходящий через человека ток также возрастет почти в два раза (до 8,3 мА).

Мы знаем, что система TN с глухозаземленной нейтралью должна иметь повторные заземления PEN проводника с общим сопротивлением заземлителей не больше 10 Ом. С добавлением этого повторного заземления большая часть тока уйдет через него, а ток, проходящий через человека снизится с 8,3 до 3,2 мА.

Стоит отметить, что везде мы рассматривали сопротивление человека равное 1000 Ом. Но ведь нужно учитывать также сопротивление обуви, пола, грунта. И действительно, если вы будете стоять к примеру на сухом деревянном полу в обуви с хорошим сопротивлением, то вы скорее всего не почувствуете ничего, прикоснувшись к нейтральному проводу. И здесь условный нулевой потенциал земли никакой роли не играет. Вы всего лишь изолируетесь от проводимости земли. А если еще и выполнена система уравнивания потенциалов, то даже стоя босиком на влажном полу или дотронувшись второй рукой до трубы или батареи, разности потенциалов с нейтралью не будет. И если мы изменим сопротивление человека с 1000 до 5000 Ом, то проходящий через тело ток снизится с 3,2 до 0,6 мА.

Как видно, утверждение, что нейтральный проводник не бьется током, в корне не верное. Разность потенциалов между ним и землей есть всегда. Зависит она от нагрузки, неравномерной нагрузки в сетях трехфазного тока, протяженности воздушной линии и сопротивления проводов. Поэтому, несмотря на то, что в большинстве случаев вы хорошо изолированы от земли либо имеется система уравнивания потенциалов, и вы можете не ощутить влияния малых токов при контакте с нейтральным проводом, никогда не прикасайтесь, не убедившись в отсутствии большого потенциала на нем. Чем больше сопротивление нейтрального провода вплоть до отгорания, тем больше разность его потенциала с потенциалом земли и тем больший ток по закону Ома потечет в этой цепи.

Нулевой защитный проводник, система заземления квартиры

Электропитание квартиры осуществляется переменным током с напряжением, номиналом 220-230 Вольт.

  1. При этом один рабочий проводник является фазным (или просто «Фаза»), а второй рабочий проводник является нулевым (иначе «рабочий ноль»). На схемах «Фаза» обозначается -L,»Ноль» обозначается-N. Такая электропроводка называется двухпроводная.
  2. Помимо двухпроводной электропроводки квартиры, применяется трехпроводная . Третий провод является нулевым защитным проводом (или «Земля»), обозначается-PE. Цвет жилы заземления в кабеле желто-зеленый.

На схеме и приборах нулевой защитный проводник (ЗЕМЛЯ) обозначается так.

Назначение проводников


Применение нулевых проводников в электрощитке
Нулевой рабочий проводник имеет еще одно название – проводник сети. По нему протекает нагрузочный ток. На схеме он обозначается латинской буквой «N».

Основная задача нулевого защитного проводника — обеспечивать безопасность. В системах с нулевым выводом глухозаземленного трансформатора он коммутирует токопроводящие части электрических приемников и нулевую точку питающего трансформатора. В аварийных или нештатных ситуациях они оказываются под ударом.

Защите от косвенного прикосновения подлежат следующие электрические элементы (согласно ПУЭ 1.7.76):

  • корпуса, изготовленные из металла, портативных и передвижных устройств;


Система c проводом PEN и двумя нулями

В качестве защиты используется коммутация этих устройств с глухозаземленной нейтралью в системах ТN или ТТ, IТ. Последние две с заземлением.

Схематически нулевой защитный проводник обозначается «РЕ». Когда электрическая цепь функционирует в штатном режиме, по РЕ ток не протекает.

На схемах комбинация «РЕ» означает нулевой защитный проводник, а также все защитные сегменты цепи, например, проложенные шины и проводники, заземляющие проводники, отдельные жилы в кабелях, а также провод в системе уравнивания потенциалов.

Система питания и система заземления

В жилых зданиях электропитание осуществляется от электроустановок в которых нейтраль(Ноль) источника питания глухозаземленна, а открытые проводящие части электроустановки присоединены к этой глухозаземленной нейтрали. Обозначается эта система электропитания-TN.

Системы заземления

Система электропитания TN для вашей квартиры может быть одной из трех видов.

Цвета проводов и шин в сети переменного тока при трехфазном подключении

Для соблюдения правильного чередования фаз при подключении трехфазных потребителей электрической энергии тоже применяют цветную маркировку шин и кабелей. Это значительно облегчает жизнь монтажникам и ремонтникам, так как по цвету кабеля или шины можно определить фазу, которая подключена или будет подключена к этому кабелю или шине. В отличии от однофазных потребителей, где фазный провод может быть выполнен кабелями с разными цветами изоляции (перечень выше), для трехфазных потребителей цвета, которыми могут обозначать фазы строго регламентированы ПУЭ.

При трехфазном подключении фаза А должна обозначатся желтым цветом, фаза В – зеленым, фаза С – красным. Нулевой рабочий, защитный и совмещенный проводники имеют такой же окрас, как и при однофазном подключении.

Допустимо выполнение цветовых обозначений кабелей и шин не по всей их длине, а только в местах присоединения кабелей или шин, как это показано на рисунке выше.

Также цветовые коды могут соответствовать международному стандарту IEC 60446 или же могут применять кодировку принятую внутри страны соответствующими регламентирующими документами. Например, в США и Канаде для заземленных и незаземленных систем используют различные цветовые коды. Ниже приведена таблица, в которой показаны для сравнения цветовые кодировки кабелей и шин различных стран:

1.Система заземления TN-C

с и с т е м а TN-С — это система TN, в которой нулевой защитный и нулевой рабочий проводники совмещены в одном проводнике на всем ее протяжении линии от источника до квартиры.

Система электропитания квартиры TN-C

Важно! Эта система электропитания применяется во всех старых домах. С 2007 года согласно ПУЭ (правила Устройства Электроустановок) схема проводки TN-C во вновь строящихся домах запрещена.

При серьезном ремонте квартиры необходимо перевести схему электропроводки TN квартиры на систему TN-C-S (смотри ниже).

Нюансы ручной цветовой разметки


Цветовая маркировка проводов с помощью кембрика
Ручная разметка применяется в момент использования проводов одинакового цвета в домах старой застройки. Перед началом работ составляется схема с цветовыми значениями проводников. В процессе укладки помечать токоведущие жилы можно:

  • стандартными кембриками;
  • кембриками с термоусадкой;
  • изоляционной лентой.

Правила допускают использование специальных наборов для маркировки. Точки установки маркеров для обозначения нуля и фазы указаны в ПУЭ и ГОСТе. Это концы провода и места его присоединения к шине.

Специфика разметки двухжильного провода


Термоусадочная трубка для проводов
Если подключение кабеля к сети уже сделано, можно использовать индикаторную отвертку. Сложность использования инструмента заключается в невозможности определения нескольких фаз. Их понадобится прозванивать мультиметром. Для предотвращения путаницы можно пометить электрический проводник цветом:

  • выбрать трубки с термоусадкой или изоленты для обозначения нуля и фазы;
  • работать с проводниками не по всей длине, а только на местах соединений и стыков.

Количество цветов определяется схемой. Главное при ее создании – не запутаться, не использовать желтые, зеленые или синие маркеры для фазы. Ее допускается размечать красным или оранжевым цветом.

Разметка трехжильного провода


При помощи мультиметра можно определить расположение фазы, ноля, и заземления
Для поиска фазы, заземления и нуля в трехжильном проводе целесообразно применять мультиметр. Его ставят на режим переменного напряжения и аккуратно щупами касаются фазы, потом – оставшихся жил. Показатели тестера следует записать и сравнить. В комбинации «фаза-земля» напряжение будет меньшим, чем в комбинации «фаза-ноль».

После уточнения линий можно делать маркировку. Понять, фаза – L или N, поможет соответствующая расцветка. У нуля она будет голубой или синей, у плюса – любой другой.

Порядок разметки пятипроводной системы

Электропроводка с трехфазной сети выполняется только пятижильным кабелем. Три проводника будут фазным, один – нейтральным, один – защитным заземлением. Цветовая маркировка применяется согласно нормативным требованиям. Для защиты используется желто-зеленая оплетка, для нуля – синяя или голубая, для фазы – из перечня разрешенных оттенков.

Как маркировать совмещенные провода

Для упрощения процесса монтажа проводки используются кабели с двумя или четырьмя жилами. Линия защиты тут соединяется с нейтралью. Буквенный индекс провода – PEN, где PE обозначает заземляющий, а N – нулевой проводник.

Согласно ГОСТу, используется особая цветовая маркировка. По длине совмещенный кабель будет желто-зеленым, а кончики и точки соединения – синими.

Выделяйте основные точки проблемных мест кембриками или изолентой.

2.Система заземления TN-S

с и с т е м а электропитания TN-S -это измененная система электропитания TN, в которой нулевой защитный и нулевой рабочий проводники разделены на всем ее протяжении линии от источника до квартиры.

Система электропитания квартиры TN-S

Важно! Не путать на протяжении всей электропроводки квартиры проводники PE (Земля) и N (ноль).

Для чего необходима маркировка

Конкретные цвета в электрике выбраны неслучайно. Цветная проводка необходима для безопасного проведения электромонтажных работ, чтобы избежать короткого замыкания и поражения электрическим током. Раньше цвет проводников был черным или белым, в результате электрикам это приносило большие неудобства.

Раньше при расключении необходимо было подать питание в проводники, после чего при помощи контрольки определяли ноль и фазу. Использование расцветки избавило от всех этих мук, потому что все стало очень понятно.

Цветовая маркировка почти всегда наносится по всей длине проводника. Она помогает установить предназначение каждого проводника к определенной группе, чтобы облегчить их коммутации. Существуют три вида проводов в электрике: фаза, ноль и заземление.

Электробезопасность

Переменный электрический ток напряжением 220 V или 380 V опасен для человека. Неосторожное прикосновения к оголенным проводам или металлическим частям электрооборудования, которые могут находиться под напряжением, чревато тяжелым ожогом или смертельной травмой. Для этого ПУЭ дает ответ на вопросы: каким образом цвет проводов фаза и ноль, L и N в электрике поможет наглядно определить применяемую систему безопасности в данной электрической сети.

3.Система заземления TN-C-S

с и с т е м а электропитания TN-C-S — это измененная система электропитания TN, в которой функции нулевого защитного и нулевого рабочего проводников совмещены в одном проводнике в какой-то ее части, начиная от источника питания.

Система электропитания квартиры TN-C-S

То есть в квартире проводники PE (Земля) и N (Ноль) разделены, а в этажном щите совмещены и присоединены к одной клемме (смотри схему выше).

Эта схема заземления особенно актуальна при серьезном ремонте квартиры с системой питания TN-C и переходе электропроводки на систему электропитания TN-C-S.

Правила прокладки


Прежде чем приступать к монтажу, требуется ознакомиться с правилами, которые предъявляются к прокладке РЕ:

  • В линии должны отсутствовать устройства, которые могут стать причиной разъединения, нарушения целостности цепи, например, удаляемые вставки, выключатели, автоматы защиты и предохранители.
  • Все оборудование и токоведущие части коммутируются с защитным заземлением напрямую.
  • Запрещено соединение нескольких электрических приборов по принципу шлейфа.
  • На распределительной шине РЕ выделяется отдельная клемма (зажим). Запрещается к одной клемме одновременно подсоединять нулевой защитный и рабочий провод.

Сопротивление изоляционного слоя РЕ не должно быть меньше указанного в нормативно-правовом документе.

Изменения в цветовую маркировку шин и проводов

В Российской Федерации ГОСТ Р 50462-92, который регулировал идентификацию проводников в электрических сетях по цифровым и цветовым обозначениям с 01.01.2011 был заменен на ГОСТ Р 50462-2009, который имеет довольно существенные отличия от ГОСТ Р 50462-92 и имеет некоторые противоречия с ПУЭ 7. Ниже приведена таблица, в которой приведены рекомендации к цветной маркировке шин и кабелей согласно ГОСТ Р 50462-92:

Цвета проводов и шин в цепях постоянного тока

В цепях постоянного тока обычно используется только две шины, а именно плюс и минус. Но иногда цепи постоянного тока бывают со средним проводником. Согласно ПУЭ шины и провода подлежат следующей маркировке в цепях постоянного тока: положительная шина (+) – красная, отрицательная (-) – синяя, нулевая рабочая М (при ее наличии) – голубая.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector